面向时间的生物医学数据查询的本体驱动中介

M. O'Connor, R. Shankar, Amar K. Das
{"title":"面向时间的生物医学数据查询的本体驱动中介","authors":"M. O'Connor, R. Shankar, Amar K. Das","doi":"10.1109/CBMS.2006.41","DOIUrl":null,"url":null,"abstract":"Most biomedical research databases contain considerable amounts of time-oriented data. However, temporal knowledge about the contextual meaning of such data is not usually represented in a principled fashion. As a result, investigators often develop custom techniques for temporal data analysis that are difficult to reuse. We addressed this problem by developing a set of knowledge-driven methods and tools for temporally representing and querying biomedical data, and have integrated them using a mediator approach. A central issue driving our work is a need to integrate temporal representations of data in relational databases with the domain-specific semantics of temporal patterns used in querying. This paper presents a formal temporal knowledge model using the semantic Web ontology and rule languages, OWL and SWRL, respectively. The model informs the mediator of the temporal semantics used for data analysis. We show that our approach provides the computational foundation for much-needed software to make sense of complex temporal patterns in two biomedical research domains","PeriodicalId":208693,"journal":{"name":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An Ontology-Driven Mediator for Querying Time-Oriented Biomedical Data\",\"authors\":\"M. O'Connor, R. Shankar, Amar K. Das\",\"doi\":\"10.1109/CBMS.2006.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most biomedical research databases contain considerable amounts of time-oriented data. However, temporal knowledge about the contextual meaning of such data is not usually represented in a principled fashion. As a result, investigators often develop custom techniques for temporal data analysis that are difficult to reuse. We addressed this problem by developing a set of knowledge-driven methods and tools for temporally representing and querying biomedical data, and have integrated them using a mediator approach. A central issue driving our work is a need to integrate temporal representations of data in relational databases with the domain-specific semantics of temporal patterns used in querying. This paper presents a formal temporal knowledge model using the semantic Web ontology and rule languages, OWL and SWRL, respectively. The model informs the mediator of the temporal semantics used for data analysis. We show that our approach provides the computational foundation for much-needed software to make sense of complex temporal patterns in two biomedical research domains\",\"PeriodicalId\":208693,\"journal\":{\"name\":\"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2006.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2006.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

大多数生物医学研究数据库都包含大量以时间为导向的数据。然而,关于这些数据的上下文含义的时间知识通常不会以有原则的方式表示。因此,调查人员经常开发难以重用的时间数据分析的定制技术。为了解决这个问题,我们开发了一套知识驱动的方法和工具,用于临时表示和查询生物医学数据,并使用中介方法将它们集成在一起。推动我们工作的一个中心问题是需要将关系数据库中数据的时态表示与查询中使用的时态模式的特定领域语义集成起来。本文分别利用语义Web本体和规则语言OWL和SWRL建立了形式化的时态知识模型。该模型将用于数据分析的时间语义告知中介。我们表明,我们的方法为急需的软件提供了计算基础,以理解两个生物医学研究领域的复杂时间模式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Ontology-Driven Mediator for Querying Time-Oriented Biomedical Data
Most biomedical research databases contain considerable amounts of time-oriented data. However, temporal knowledge about the contextual meaning of such data is not usually represented in a principled fashion. As a result, investigators often develop custom techniques for temporal data analysis that are difficult to reuse. We addressed this problem by developing a set of knowledge-driven methods and tools for temporally representing and querying biomedical data, and have integrated them using a mediator approach. A central issue driving our work is a need to integrate temporal representations of data in relational databases with the domain-specific semantics of temporal patterns used in querying. This paper presents a formal temporal knowledge model using the semantic Web ontology and rule languages, OWL and SWRL, respectively. The model informs the mediator of the temporal semantics used for data analysis. We show that our approach provides the computational foundation for much-needed software to make sense of complex temporal patterns in two biomedical research domains
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probing the Use and Value of Video for Multi-Disciplinary Medical Teams in Teleconference Application of Maximum Entropy-Based Image Resizing to Biomedical Imaging Measurement of Relative Brain Atrophy in Neurodegenerative Diseases Enhancing Wireless Patient Monitoring by Integrating Stored and Live Patient Information Using Visual Interpretation of Small Ensembles in Microarray Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1