{"title":"采用多轴数控磨床提高航空燃气涡轮发动机零部件的加工性能、质量和精度的特点","authors":"V. Makarov, Mihail Pesin, Aleksandr Norin","doi":"10.30987/2782-5957-2023-2-19-26","DOIUrl":null,"url":null,"abstract":"The paper is aimed at improving the productivity, quality and accuracy of manufacturing gas turbine engine parts and assemblies for the modern growing passenger aviation transport based on the use of technical capabilities of modern multiaxis CNC grinding machining centers. The paper shows the results of successful application of a five-axis CNC grinding machining center MFP-050.65.65 made by Magerle (Switzerland), which allows reducing by five times the number of operations, universal machines, special devices and cutting tools by increasing the number of machined surfaces for one set of nozzle blades of an aviation gas turbine engine. Simultaneously with a significant increase in the productivity of machining various multidirectional surfaces of the nozzle blades due to the use of new highly porous grinding wheels and rational modes of deep grinding, a higher burn-free quality of the ground surfaces is ensured and an important task is solved to increase the accuracy of the flow sections of the turbine nozzle apparatus with the combined use of CNC system and special software for correcting errors of part casting surfaces during their installation, turning and deep grinding of the base surfaces. The developed new technology of nozzle blades machining was introduced for the first time in the Russian Federation at the Aviadvigatel enterprise for manufacturing nozzle blades of modern newly produced gas turbine engines.","PeriodicalId":289189,"journal":{"name":"Transport engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FEATURES OF USING MULTIAXIS CNC GRINDING MACHINES TO IMPROVE MACHINING PERFORMANCE, QUALITY AND ACCURACYOF PARTS AND ASSEMBLIES OF AVIATION GAS TURBINE ENGINES\",\"authors\":\"V. Makarov, Mihail Pesin, Aleksandr Norin\",\"doi\":\"10.30987/2782-5957-2023-2-19-26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is aimed at improving the productivity, quality and accuracy of manufacturing gas turbine engine parts and assemblies for the modern growing passenger aviation transport based on the use of technical capabilities of modern multiaxis CNC grinding machining centers. The paper shows the results of successful application of a five-axis CNC grinding machining center MFP-050.65.65 made by Magerle (Switzerland), which allows reducing by five times the number of operations, universal machines, special devices and cutting tools by increasing the number of machined surfaces for one set of nozzle blades of an aviation gas turbine engine. Simultaneously with a significant increase in the productivity of machining various multidirectional surfaces of the nozzle blades due to the use of new highly porous grinding wheels and rational modes of deep grinding, a higher burn-free quality of the ground surfaces is ensured and an important task is solved to increase the accuracy of the flow sections of the turbine nozzle apparatus with the combined use of CNC system and special software for correcting errors of part casting surfaces during their installation, turning and deep grinding of the base surfaces. The developed new technology of nozzle blades machining was introduced for the first time in the Russian Federation at the Aviadvigatel enterprise for manufacturing nozzle blades of modern newly produced gas turbine engines.\",\"PeriodicalId\":289189,\"journal\":{\"name\":\"Transport engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/2782-5957-2023-2-19-26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/2782-5957-2023-2-19-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FEATURES OF USING MULTIAXIS CNC GRINDING MACHINES TO IMPROVE MACHINING PERFORMANCE, QUALITY AND ACCURACYOF PARTS AND ASSEMBLIES OF AVIATION GAS TURBINE ENGINES
The paper is aimed at improving the productivity, quality and accuracy of manufacturing gas turbine engine parts and assemblies for the modern growing passenger aviation transport based on the use of technical capabilities of modern multiaxis CNC grinding machining centers. The paper shows the results of successful application of a five-axis CNC grinding machining center MFP-050.65.65 made by Magerle (Switzerland), which allows reducing by five times the number of operations, universal machines, special devices and cutting tools by increasing the number of machined surfaces for one set of nozzle blades of an aviation gas turbine engine. Simultaneously with a significant increase in the productivity of machining various multidirectional surfaces of the nozzle blades due to the use of new highly porous grinding wheels and rational modes of deep grinding, a higher burn-free quality of the ground surfaces is ensured and an important task is solved to increase the accuracy of the flow sections of the turbine nozzle apparatus with the combined use of CNC system and special software for correcting errors of part casting surfaces during their installation, turning and deep grinding of the base surfaces. The developed new technology of nozzle blades machining was introduced for the first time in the Russian Federation at the Aviadvigatel enterprise for manufacturing nozzle blades of modern newly produced gas turbine engines.