基于层次结构的自主水下航行器任务分配研究

Liang Qiao, Yun Li, Shanlin Sun, Biaohang Sun, Kai Tian, Zhitian Li, Xingyu Lu
{"title":"基于层次结构的自主水下航行器任务分配研究","authors":"Liang Qiao, Yun Li, Shanlin Sun, Biaohang Sun, Kai Tian, Zhitian Li, Xingyu Lu","doi":"10.1109/ICCCWorkshops52231.2021.9538880","DOIUrl":null,"url":null,"abstract":"There are two structures in formation control system for Autonomous Underwater Vehicle (AUV), such as centralized and distributed structures. Centralized cluster formation brings too much overhead to the master node, and the distributed cluster formation poses a huge challenge to collaborative communication. To address these problems, this paper proposes a hierarchical structure for AUV cluster formation task allocation strategy. The strategy deals with the local cluster information hierarchically, uses priority sampling to sample the hierarchical cluster information and stores it in the experience pool, and then uses the Actor-Critic dual network for evaluation to obtain the optimal strategy. The experimental simulation results show that the method proposed in this paper is consistent between the master and the slave, and the system improves the convergence speed with a smaller number of iterations.","PeriodicalId":335240,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Task Assignment Based on Hierarchical Structure for Autonomous Underwater Vehicle\",\"authors\":\"Liang Qiao, Yun Li, Shanlin Sun, Biaohang Sun, Kai Tian, Zhitian Li, Xingyu Lu\",\"doi\":\"10.1109/ICCCWorkshops52231.2021.9538880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two structures in formation control system for Autonomous Underwater Vehicle (AUV), such as centralized and distributed structures. Centralized cluster formation brings too much overhead to the master node, and the distributed cluster formation poses a huge challenge to collaborative communication. To address these problems, this paper proposes a hierarchical structure for AUV cluster formation task allocation strategy. The strategy deals with the local cluster information hierarchically, uses priority sampling to sample the hierarchical cluster information and stores it in the experience pool, and then uses the Actor-Critic dual network for evaluation to obtain the optimal strategy. The experimental simulation results show that the method proposed in this paper is consistent between the master and the slave, and the system improves the convergence speed with a smaller number of iterations.\",\"PeriodicalId\":335240,\"journal\":{\"name\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCWorkshops52231.2021.9538880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops52231.2021.9538880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自主水下航行器(AUV)编队控制系统有集中式和分布式两种结构。集中式集群的形成给主节点带来了过多的开销,分布式集群的形成给协作通信带来了巨大的挑战。针对这些问题,本文提出了一种分层结构的水下航行器编队任务分配策略。该策略对局部聚类信息进行分层处理,利用优先级抽样对分层聚类信息进行抽样并存储在经验池中,然后利用Actor-Critic双网络进行评估,得到最优策略。实验仿真结果表明,本文提出的方法具有主从一致性,系统迭代次数少,收敛速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Task Assignment Based on Hierarchical Structure for Autonomous Underwater Vehicle
There are two structures in formation control system for Autonomous Underwater Vehicle (AUV), such as centralized and distributed structures. Centralized cluster formation brings too much overhead to the master node, and the distributed cluster formation poses a huge challenge to collaborative communication. To address these problems, this paper proposes a hierarchical structure for AUV cluster formation task allocation strategy. The strategy deals with the local cluster information hierarchically, uses priority sampling to sample the hierarchical cluster information and stores it in the experience pool, and then uses the Actor-Critic dual network for evaluation to obtain the optimal strategy. The experimental simulation results show that the method proposed in this paper is consistent between the master and the slave, and the system improves the convergence speed with a smaller number of iterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Link Reliability Prediction for Long-range Underwater Acoustic Communications between Gliders A Review of 3GPP Release 18 on Smart Energy and Infrastructure Analysis on Power Configuration in 5G Co-construction and Sharing Network Application of Passive Acoustic Technology in the Monitoring of Abalone’s Feeding Behavior Ultra-Compact Dual-Polarized Dipole Antenna for Ultra-Massive MIMO Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1