结合场景描述关键字的基于内容的灵活图像检索系统

Atsushi Ono, Masashi Amano, Mitsuhiro Hakaridani, T. Satou, M. Sakauchi
{"title":"结合场景描述关键字的基于内容的灵活图像检索系统","authors":"Atsushi Ono, Masashi Amano, Mitsuhiro Hakaridani, T. Satou, M. Sakauchi","doi":"10.1109/MMCS.1996.534975","DOIUrl":null,"url":null,"abstract":"Proposes an image database with a fully automated keyword extraction function. Our approach can extract two different conceptual-level keywords from images. One is the \"conceptual keyword\", which is extracted by an image recognition technique using the \"state transition model\", which is a hierarchical model. The other keyword is the \"scene description keyword\", which is extracted by primitive parameters of color segments. We also propose the introduction of a \"transition probability\" to raise the retrieval accuracy (precision). Moreover, we evaluate the retrieval accuracy of this image database through a retrieval experiment using about 170 scenery images.","PeriodicalId":371043,"journal":{"name":"Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"A flexible content-based image retrieval system with combined scene description keyword\",\"authors\":\"Atsushi Ono, Masashi Amano, Mitsuhiro Hakaridani, T. Satou, M. Sakauchi\",\"doi\":\"10.1109/MMCS.1996.534975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes an image database with a fully automated keyword extraction function. Our approach can extract two different conceptual-level keywords from images. One is the \\\"conceptual keyword\\\", which is extracted by an image recognition technique using the \\\"state transition model\\\", which is a hierarchical model. The other keyword is the \\\"scene description keyword\\\", which is extracted by primitive parameters of color segments. We also propose the introduction of a \\\"transition probability\\\" to raise the retrieval accuracy (precision). Moreover, we evaluate the retrieval accuracy of this image database through a retrieval experiment using about 170 scenery images.\",\"PeriodicalId\":371043,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMCS.1996.534975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMCS.1996.534975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

提出了一个具有全自动关键字提取功能的图像数据库。我们的方法可以从图像中提取两个不同的概念级关键词。一种是“概念关键词”,它是通过使用“状态转移模型”的图像识别技术提取的,这是一种分层模型。另一个关键字是“场景描述关键字”,该关键字是通过颜色段的原始参数提取出来的。我们还提出引入“转移概率”来提高检索精度(precision)。此外,通过对170幅风景图像的检索实验,对该图像数据库的检索精度进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A flexible content-based image retrieval system with combined scene description keyword
Proposes an image database with a fully automated keyword extraction function. Our approach can extract two different conceptual-level keywords from images. One is the "conceptual keyword", which is extracted by an image recognition technique using the "state transition model", which is a hierarchical model. The other keyword is the "scene description keyword", which is extracted by primitive parameters of color segments. We also propose the introduction of a "transition probability" to raise the retrieval accuracy (precision). Moreover, we evaluate the retrieval accuracy of this image database through a retrieval experiment using about 170 scenery images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic QOS control based on the QOS-Ticket model A direct ATM multicast service with quality-of-service guarantees Video/text linkage system assisted by a concept dictionary and image recognition Real-time gesture recognition using Maskable Template Model Burst handling of digital video traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1