基于语音特征串联模型的美国手语手势语拼写识别

Taehwan Kim, Karen Livescu, Gregory Shakhnarovich
{"title":"基于语音特征串联模型的美国手语手势语拼写识别","authors":"Taehwan Kim, Karen Livescu, Gregory Shakhnarovich","doi":"10.1109/SLT.2012.6424208","DOIUrl":null,"url":null,"abstract":"We study the recognition of fingerspelling sequences in American Sign Language from video using tandem-style models, in which the outputs of multilayer perceptron (MLP) classifiers are used as observations in a hidden Markov model (HMM)-based recognizer. We compare a baseline HMM-based recognizer, a tandem recognizer using MLP letter classifiers, and a tandem recognizer using MLP classifiers of phonological features. We present experiments on a database of fingerspelling videos. We find that the tandem approaches outperform an HMM-based baseline, and that phonological feature-based tandem models outperform letter-based tandem models.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"American sign language fingerspelling recognition with phonological feature-based tandem models\",\"authors\":\"Taehwan Kim, Karen Livescu, Gregory Shakhnarovich\",\"doi\":\"10.1109/SLT.2012.6424208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the recognition of fingerspelling sequences in American Sign Language from video using tandem-style models, in which the outputs of multilayer perceptron (MLP) classifiers are used as observations in a hidden Markov model (HMM)-based recognizer. We compare a baseline HMM-based recognizer, a tandem recognizer using MLP letter classifiers, and a tandem recognizer using MLP classifiers of phonological features. We present experiments on a database of fingerspelling videos. We find that the tandem approaches outperform an HMM-based baseline, and that phonological feature-based tandem models outperform letter-based tandem models.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们使用串联式模型研究了美国手语视频中指纹拼写序列的识别,其中多层感知器(MLP)分类器的输出作为基于隐马尔可夫模型(HMM)的识别器的观察值。我们比较了基于基线hmm的识别器、使用MLP字母分类器的串联识别器和使用MLP语音特征分类器的串联识别器。我们在一个指纹拼写视频数据库上进行实验。我们发现串联方法优于基于hmm的基线,并且基于语音特征的串联模型优于基于字母的串联模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
American sign language fingerspelling recognition with phonological feature-based tandem models
We study the recognition of fingerspelling sequences in American Sign Language from video using tandem-style models, in which the outputs of multilayer perceptron (MLP) classifiers are used as observations in a hidden Markov model (HMM)-based recognizer. We compare a baseline HMM-based recognizer, a tandem recognizer using MLP letter classifiers, and a tandem recognizer using MLP classifiers of phonological features. We present experiments on a database of fingerspelling videos. We find that the tandem approaches outperform an HMM-based baseline, and that phonological feature-based tandem models outperform letter-based tandem models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining criteria for the detection of incorrect entries of non-native speech in the context of foreign language learning Two-layer mutually reinforced random walk for improved multi-party meeting summarization Train&align: A new online tool for automatic phonetic alignment Automatic detection and correction of syntax-based prosody annotation errors Word segmentation through cross-lingual word-to-phoneme alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1