Prashant Kumar, S. Sonkar, A. K. Ghosh, Deepu Philip
{"title":"轻型动力滑翔伞的动态航路点导航与控制","authors":"Prashant Kumar, S. Sonkar, A. K. Ghosh, Deepu Philip","doi":"10.1109/AERO47225.2020.9172564","DOIUrl":null,"url":null,"abstract":"A Powered Paraglider, also known as Paramotor, has a ram-air inflated canopy in the shape of an aerofoil from which a payload, commonly called as Gondola, housing both propulsion system and control mechanism is suspended. It can lift heavy loads, is quick to setup for rapid launch, and is compact and light-weight, thereby making it ideal for military operations like tactical surveillance and cargo deployment. Paramotors are suitable for scenarios where stable and low speed flying capabilities are necessary. This paper presents a software architecture for guidance and control of light weight small scale Paramotors. For heading and altitude tracking, the system uses feedback compensated control laws. First, linear models are derived that describe both the Paramotor's longitudinal and lateral dynamics. Then, a six degree-of-freedom model is used to describe dynamics, weight, aerodynamic forces on payload and parafoil, aerodynamic moments, effect of apparent forces and moments, moments generated on the centre of mass by the forces exerted at the payload and parafoil. Then system identification based on simplified linear lateral and longitudinal models is used. These simplified linear models are used for designing control laws using classical frequency domain techniques. MATLAB/Simulink was used to simulate the performance of the proposed Paramotor controllers. It was found that the described approach is robust enough for designing control strategies to maintain stability in event of disturbances.","PeriodicalId":114560,"journal":{"name":"2020 IEEE Aerospace Conference","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic Waypoint Navigation and Control of Light Weight Powered Paraglider\",\"authors\":\"Prashant Kumar, S. Sonkar, A. K. Ghosh, Deepu Philip\",\"doi\":\"10.1109/AERO47225.2020.9172564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Powered Paraglider, also known as Paramotor, has a ram-air inflated canopy in the shape of an aerofoil from which a payload, commonly called as Gondola, housing both propulsion system and control mechanism is suspended. It can lift heavy loads, is quick to setup for rapid launch, and is compact and light-weight, thereby making it ideal for military operations like tactical surveillance and cargo deployment. Paramotors are suitable for scenarios where stable and low speed flying capabilities are necessary. This paper presents a software architecture for guidance and control of light weight small scale Paramotors. For heading and altitude tracking, the system uses feedback compensated control laws. First, linear models are derived that describe both the Paramotor's longitudinal and lateral dynamics. Then, a six degree-of-freedom model is used to describe dynamics, weight, aerodynamic forces on payload and parafoil, aerodynamic moments, effect of apparent forces and moments, moments generated on the centre of mass by the forces exerted at the payload and parafoil. Then system identification based on simplified linear lateral and longitudinal models is used. These simplified linear models are used for designing control laws using classical frequency domain techniques. MATLAB/Simulink was used to simulate the performance of the proposed Paramotor controllers. It was found that the described approach is robust enough for designing control strategies to maintain stability in event of disturbances.\",\"PeriodicalId\":114560,\"journal\":{\"name\":\"2020 IEEE Aerospace Conference\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO47225.2020.9172564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO47225.2020.9172564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Waypoint Navigation and Control of Light Weight Powered Paraglider
A Powered Paraglider, also known as Paramotor, has a ram-air inflated canopy in the shape of an aerofoil from which a payload, commonly called as Gondola, housing both propulsion system and control mechanism is suspended. It can lift heavy loads, is quick to setup for rapid launch, and is compact and light-weight, thereby making it ideal for military operations like tactical surveillance and cargo deployment. Paramotors are suitable for scenarios where stable and low speed flying capabilities are necessary. This paper presents a software architecture for guidance and control of light weight small scale Paramotors. For heading and altitude tracking, the system uses feedback compensated control laws. First, linear models are derived that describe both the Paramotor's longitudinal and lateral dynamics. Then, a six degree-of-freedom model is used to describe dynamics, weight, aerodynamic forces on payload and parafoil, aerodynamic moments, effect of apparent forces and moments, moments generated on the centre of mass by the forces exerted at the payload and parafoil. Then system identification based on simplified linear lateral and longitudinal models is used. These simplified linear models are used for designing control laws using classical frequency domain techniques. MATLAB/Simulink was used to simulate the performance of the proposed Paramotor controllers. It was found that the described approach is robust enough for designing control strategies to maintain stability in event of disturbances.