歌唱语音数据的说话人识别系统性能评价

Wei-Ho Tsai, Hsin-Chieh Lee
{"title":"歌唱语音数据的说话人识别系统性能评价","authors":"Wei-Ho Tsai, Hsin-Chieh Lee","doi":"10.30019/IJCLCLP.201106.0001","DOIUrl":null,"url":null,"abstract":"Automatic speaker-identification (SID) has long been an important research topic. It is aimed at identifying who among a set of enrolled persons spoke a given utterance. This study extends the conventional SID problem to examining if an SID system trained using speech data can identify the singing voices of the enrolled persons. Our experiment found that a standard SID system fails to identify most singing data, due to the significant differences between singing and speaking for a majority of people. In order for an SID system to handle both speech and singing data, we examine the feasibility of using model-adaptation strategy to enhance the generalization of a standard SID. Our experiments show that a majority of the singing clips can be correctly identified after adapting speech-derived voice models with some singing data.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Speaker-Identification Systems for Singing Voice Data\",\"authors\":\"Wei-Ho Tsai, Hsin-Chieh Lee\",\"doi\":\"10.30019/IJCLCLP.201106.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic speaker-identification (SID) has long been an important research topic. It is aimed at identifying who among a set of enrolled persons spoke a given utterance. This study extends the conventional SID problem to examining if an SID system trained using speech data can identify the singing voices of the enrolled persons. Our experiment found that a standard SID system fails to identify most singing data, due to the significant differences between singing and speaking for a majority of people. In order for an SID system to handle both speech and singing data, we examine the feasibility of using model-adaptation strategy to enhance the generalization of a standard SID. Our experiments show that a majority of the singing clips can be correctly identified after adapting speech-derived voice models with some singing data.\",\"PeriodicalId\":436300,\"journal\":{\"name\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30019/IJCLCLP.201106.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.201106.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动说话人识别(SID)一直是一个重要的研究课题。它的目的是确定在一组登记的人中谁说了给定的话语。本研究将传统的SID问题扩展到检查使用语音数据训练的SID系统是否可以识别入组人员的歌声。我们的实验发现,标准的SID系统无法识别大多数唱歌数据,因为大多数人在唱歌和说话之间存在显著差异。为了使SID系统同时处理语音和歌唱数据,我们研究了使用模型自适应策略来增强标准SID泛化的可行性。我们的实验表明,在使用一些歌唱数据调整语音衍生的语音模型后,可以正确识别大多数歌唱片段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Evaluation of Speaker-Identification Systems for Singing Voice Data
Automatic speaker-identification (SID) has long been an important research topic. It is aimed at identifying who among a set of enrolled persons spoke a given utterance. This study extends the conventional SID problem to examining if an SID system trained using speech data can identify the singing voices of the enrolled persons. Our experiment found that a standard SID system fails to identify most singing data, due to the significant differences between singing and speaking for a majority of people. In order for an SID system to handle both speech and singing data, we examine the feasibility of using model-adaptation strategy to enhance the generalization of a standard SID. Our experiments show that a majority of the singing clips can be correctly identified after adapting speech-derived voice models with some singing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1