基于逻辑切换的在线周期自适应学习控制算法处理不确定参数的未知周期和界

Jiasen Wang, Miao Yu, X. Ye
{"title":"基于逻辑切换的在线周期自适应学习控制算法处理不确定参数的未知周期和界","authors":"Jiasen Wang, Miao Yu, X. Ye","doi":"10.1109/ICCA.2013.6565055","DOIUrl":null,"url":null,"abstract":"In this paper, a switching periodic adaptive control approach is proposed for a class of nonlinear systems with periodic parametric uncertainties whose period and bound are not known. A fully saturated periodic adaptation law is utilized to estimate the unknown parameter vector. A logic switching based algorithm is provided to tune the unknown period and bound of the parameter vector online. By virtue of Lyapunov energy function, asymptotic convergence can be ensured for the tracking error and all the signals in the system is guaranteed bounded. A simulation to a one-link robotic manipulator is carried out to demonstrate the effectiveness of the switching learning control algorithm.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Logic switching based online periodic adaptive learning control algorithm dealing with unknown period and bound of the uncertain parameter\",\"authors\":\"Jiasen Wang, Miao Yu, X. Ye\",\"doi\":\"10.1109/ICCA.2013.6565055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a switching periodic adaptive control approach is proposed for a class of nonlinear systems with periodic parametric uncertainties whose period and bound are not known. A fully saturated periodic adaptation law is utilized to estimate the unknown parameter vector. A logic switching based algorithm is provided to tune the unknown period and bound of the parameter vector online. By virtue of Lyapunov energy function, asymptotic convergence can be ensured for the tracking error and all the signals in the system is guaranteed bounded. A simulation to a one-link robotic manipulator is carried out to demonstrate the effectiveness of the switching learning control algorithm.\",\"PeriodicalId\":336534,\"journal\":{\"name\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2013.6565055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6565055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对一类参数不确定且周期和界未知的非线性系统,提出了一种切换周期自适应控制方法。利用全饱和周期自适应律估计未知参数向量。提出了一种基于逻辑切换的参数矢量未知周期和界在线调谐算法。利用Lyapunov能量函数,可以保证跟踪误差的渐近收敛,保证系统中所有信号有界。通过对单连杆机械臂的仿真,验证了切换学习控制算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Logic switching based online periodic adaptive learning control algorithm dealing with unknown period and bound of the uncertain parameter
In this paper, a switching periodic adaptive control approach is proposed for a class of nonlinear systems with periodic parametric uncertainties whose period and bound are not known. A fully saturated periodic adaptation law is utilized to estimate the unknown parameter vector. A logic switching based algorithm is provided to tune the unknown period and bound of the parameter vector online. By virtue of Lyapunov energy function, asymptotic convergence can be ensured for the tracking error and all the signals in the system is guaranteed bounded. A simulation to a one-link robotic manipulator is carried out to demonstrate the effectiveness of the switching learning control algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cooperative task planning for multiple autonomous UAVs with graph representation and genetic algorithm Real-time measure and control system of biped walking robot based on sensor Simultaneously scheduling production plan and maintenance policy for a single machine with failure uncertainty Fuzzy grey sliding mode control for maximum power point tracking of photovoltaic systems A data-driven approach for sensor fault diagnosis in gearbox of wind energy conversion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1