H. V. Le, H. T. Duong, C. Ta, A. Huynh, Robin J. Evans, E. Skafidas
{"title":"用于车载雷达接收机的77 GHz CMOS低噪声放大器","authors":"H. V. Le, H. T. Duong, C. Ta, A. Huynh, Robin J. Evans, E. Skafidas","doi":"10.1109/RFIT.2012.6401651","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a low noise amplifier (LNA) for automotive radar application operating at 76-77 GHz. The LNA consists of 5 cascade common source amplifiers. The output of each stage is positioned close to the gate of the next stage creating a LC resonance output load, therefore complex interstage matching networks are eliminated. Moreover, transmission lines (T Ls) are utilized to create matching and load inductors. As a result, chip size is significantly reduced. The proposed LNA is implemented in a 65 nm CMOS technology and measurement results show 11 dB voltage gain, and 7.8 dB noise figure (NF) while dissipating 21.5 mA from 1.2 V supply.","PeriodicalId":187550,"journal":{"name":"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A 77 GHz CMOS low noise amplifier for automotive radar receiver\",\"authors\":\"H. V. Le, H. T. Duong, C. Ta, A. Huynh, Robin J. Evans, E. Skafidas\",\"doi\":\"10.1109/RFIT.2012.6401651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a low noise amplifier (LNA) for automotive radar application operating at 76-77 GHz. The LNA consists of 5 cascade common source amplifiers. The output of each stage is positioned close to the gate of the next stage creating a LC resonance output load, therefore complex interstage matching networks are eliminated. Moreover, transmission lines (T Ls) are utilized to create matching and load inductors. As a result, chip size is significantly reduced. The proposed LNA is implemented in a 65 nm CMOS technology and measurement results show 11 dB voltage gain, and 7.8 dB noise figure (NF) while dissipating 21.5 mA from 1.2 V supply.\",\"PeriodicalId\":187550,\"journal\":{\"name\":\"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIT.2012.6401651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2012.6401651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 77 GHz CMOS low noise amplifier for automotive radar receiver
This paper presents the design of a low noise amplifier (LNA) for automotive radar application operating at 76-77 GHz. The LNA consists of 5 cascade common source amplifiers. The output of each stage is positioned close to the gate of the next stage creating a LC resonance output load, therefore complex interstage matching networks are eliminated. Moreover, transmission lines (T Ls) are utilized to create matching and load inductors. As a result, chip size is significantly reduced. The proposed LNA is implemented in a 65 nm CMOS technology and measurement results show 11 dB voltage gain, and 7.8 dB noise figure (NF) while dissipating 21.5 mA from 1.2 V supply.