{"title":"包括3D打印在内的无源光学元件控制高功率太赫兹辐射传播的前景","authors":"D. Ezhov, D. Lubenko, V. Losev, Y. Andreev","doi":"10.1117/12.2614227","DOIUrl":null,"url":null,"abstract":"Optical properties of different commercial plastics for fused deposition modeling 3D printing are defined at room temperature in the spectral range 0.2˗1.2 THz. We compare absorption coefficients and refractive index of ABS, PETG, and SBS printed 1-4 mm plates. Different types of optical elements for controlling high-power THz radiation are studied. A comparison is made of the efficiency of attenuation of linearly polarized THz radiation with homemade band-pass polarizers obtained by etching copper from a flexible polyimide substrate. Filters and polarizers created using 3D printing or by deposition of polymer matrix with magnetic particles under external field are cost-effective and can be easily changed or replaced. Comparison between plastic insets, filters based on magnetic particles, and polyimide film filters are made.","PeriodicalId":205170,"journal":{"name":"Atomic and Molecular Pulsed Lasers","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects of controlling the propagation of high-power THz radiation by passive optical elements including 3D printed\",\"authors\":\"D. Ezhov, D. Lubenko, V. Losev, Y. Andreev\",\"doi\":\"10.1117/12.2614227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical properties of different commercial plastics for fused deposition modeling 3D printing are defined at room temperature in the spectral range 0.2˗1.2 THz. We compare absorption coefficients and refractive index of ABS, PETG, and SBS printed 1-4 mm plates. Different types of optical elements for controlling high-power THz radiation are studied. A comparison is made of the efficiency of attenuation of linearly polarized THz radiation with homemade band-pass polarizers obtained by etching copper from a flexible polyimide substrate. Filters and polarizers created using 3D printing or by deposition of polymer matrix with magnetic particles under external field are cost-effective and can be easily changed or replaced. Comparison between plastic insets, filters based on magnetic particles, and polyimide film filters are made.\",\"PeriodicalId\":205170,\"journal\":{\"name\":\"Atomic and Molecular Pulsed Lasers\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic and Molecular Pulsed Lasers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2614227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic and Molecular Pulsed Lasers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2614227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prospects of controlling the propagation of high-power THz radiation by passive optical elements including 3D printed
Optical properties of different commercial plastics for fused deposition modeling 3D printing are defined at room temperature in the spectral range 0.2˗1.2 THz. We compare absorption coefficients and refractive index of ABS, PETG, and SBS printed 1-4 mm plates. Different types of optical elements for controlling high-power THz radiation are studied. A comparison is made of the efficiency of attenuation of linearly polarized THz radiation with homemade band-pass polarizers obtained by etching copper from a flexible polyimide substrate. Filters and polarizers created using 3D printing or by deposition of polymer matrix with magnetic particles under external field are cost-effective and can be easily changed or replaced. Comparison between plastic insets, filters based on magnetic particles, and polyimide film filters are made.