基于自适应差分进化的无功系统测试输入生成优化

A. Szenkovits, Noémi Gaskó, Hunor Jakab
{"title":"基于自适应差分进化的无功系统测试输入生成优化","authors":"A. Szenkovits, Noémi Gaskó, Hunor Jakab","doi":"10.1109/SYNASC.2016.042","DOIUrl":null,"url":null,"abstract":"The development of search-based algorithms forautomatic test case generation is a key issue in the researcharea of software testing. Evolutionary algorithms have beenfrequently used for this purpose due to their ability to solvecomplex optimization problems. In this paper we introduce anovel approach to the automatic test-case generation problemfor reactive software systems. We build upon our previouswork where we defined a test generation framework based onparameterized executable environment models written in theLutin language. The main contribution of this paper is theapplication of a self-adaptive evolutionary algorithm, JADE inthe context of our test generation framework and the evaluationof its performance on a realistic reactive system written in Scade. Our preliminary results show that adaptive differential evolutioncan be used efficiently to increase the structural coverage of thesystem under test and is easier to use due to the fewer parametersthat require fine-tuning.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"29 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing Test Input Generation for Reactive Systems with an Adaptive Differential Evolution\",\"authors\":\"A. Szenkovits, Noémi Gaskó, Hunor Jakab\",\"doi\":\"10.1109/SYNASC.2016.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of search-based algorithms forautomatic test case generation is a key issue in the researcharea of software testing. Evolutionary algorithms have beenfrequently used for this purpose due to their ability to solvecomplex optimization problems. In this paper we introduce anovel approach to the automatic test-case generation problemfor reactive software systems. We build upon our previouswork where we defined a test generation framework based onparameterized executable environment models written in theLutin language. The main contribution of this paper is theapplication of a self-adaptive evolutionary algorithm, JADE inthe context of our test generation framework and the evaluationof its performance on a realistic reactive system written in Scade. Our preliminary results show that adaptive differential evolutioncan be used efficiently to increase the structural coverage of thesystem under test and is easier to use due to the fewer parametersthat require fine-tuning.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"29 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于搜索的测试用例自动生成算法的开发是软件测试研究领域的一个关键问题。进化算法由于其解决复杂优化问题的能力而经常用于此目的。本文介绍了一种解决响应式软件系统测试用例自动生成问题的新方法。我们在之前的工作中定义了一个测试生成框架,该框架是基于用tin语言编写的参数化可执行环境模型。本文的主要贡献是在我们的测试生成框架中应用自适应进化算法JADE,并在用Scade编写的实际反应系统上评估其性能。我们的初步结果表明,自适应差分进化可以有效地用于增加被测系统的结构覆盖率,并且由于需要微调的参数较少,因此更容易使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Test Input Generation for Reactive Systems with an Adaptive Differential Evolution
The development of search-based algorithms forautomatic test case generation is a key issue in the researcharea of software testing. Evolutionary algorithms have beenfrequently used for this purpose due to their ability to solvecomplex optimization problems. In this paper we introduce anovel approach to the automatic test-case generation problemfor reactive software systems. We build upon our previouswork where we defined a test generation framework based onparameterized executable environment models written in theLutin language. The main contribution of this paper is theapplication of a self-adaptive evolutionary algorithm, JADE inthe context of our test generation framework and the evaluationof its performance on a realistic reactive system written in Scade. Our preliminary results show that adaptive differential evolutioncan be used efficiently to increase the structural coverage of thesystem under test and is easier to use due to the fewer parametersthat require fine-tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1