RAS-E2E: SincNet端到端的RawNet损耗,用于文本无关的说话人验证

Pantid Chantangphol, Theerat Sakdejayont, Tawunrat Chalothorn
{"title":"RAS-E2E: SincNet端到端的RawNet损耗,用于文本无关的说话人验证","authors":"Pantid Chantangphol, Theerat Sakdejayont, Tawunrat Chalothorn","doi":"10.1109/iSAI-NLP56921.2022.9960255","DOIUrl":null,"url":null,"abstract":"Despite reaching satisfactory verification performance, variousness utterance duration and phonemes and the robustness of the system remain a challenge in speaker ver-ification tasks. To deal with this challenge, we propose RAS-E2E, a novel fully cross-lingual speaker verification system that discovers meaningful information from input raw waveforms of various duration utterances, including short utterance duration, to determine whether an utterance matches the target speaker by merging two powerful paradigms: SincNet and Rawnet training scheme with Bi-RNN. The conducted experiments on Voxceleb, Gowajee and internal call-center datasets demonstrate that RAS-E2E achieves better performance compared to the recent verification systems on waveforms.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAS-E2E: The SincNet end-to-end with RawNet loss for text-independent speaker verification\",\"authors\":\"Pantid Chantangphol, Theerat Sakdejayont, Tawunrat Chalothorn\",\"doi\":\"10.1109/iSAI-NLP56921.2022.9960255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite reaching satisfactory verification performance, variousness utterance duration and phonemes and the robustness of the system remain a challenge in speaker ver-ification tasks. To deal with this challenge, we propose RAS-E2E, a novel fully cross-lingual speaker verification system that discovers meaningful information from input raw waveforms of various duration utterances, including short utterance duration, to determine whether an utterance matches the target speaker by merging two powerful paradigms: SincNet and Rawnet training scheme with Bi-RNN. The conducted experiments on Voxceleb, Gowajee and internal call-center datasets demonstrate that RAS-E2E achieves better performance compared to the recent verification systems on waveforms.\",\"PeriodicalId\":399019,\"journal\":{\"name\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSAI-NLP56921.2022.9960255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管取得了令人满意的验证效果,但在说话人验证任务中,语音长度和音素的多样性以及系统的鲁棒性仍然是一个挑战。为了应对这一挑战,我们提出了一种全新的全跨语言说话人验证系统RAS-E2E,该系统通过将两种强大的范例:SincNet和Rawnet训练方案与Bi-RNN相结合,从各种持续时间的话语(包括短话语持续时间)的输入原始波形中发现有意义的信息,以确定话语是否与目标说话人匹配。在Voxceleb、Gowajee和内部呼叫中心数据集上进行的实验表明,与最近的波形验证系统相比,RAS-E2E具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RAS-E2E: The SincNet end-to-end with RawNet loss for text-independent speaker verification
Despite reaching satisfactory verification performance, variousness utterance duration and phonemes and the robustness of the system remain a challenge in speaker ver-ification tasks. To deal with this challenge, we propose RAS-E2E, a novel fully cross-lingual speaker verification system that discovers meaningful information from input raw waveforms of various duration utterances, including short utterance duration, to determine whether an utterance matches the target speaker by merging two powerful paradigms: SincNet and Rawnet training scheme with Bi-RNN. The conducted experiments on Voxceleb, Gowajee and internal call-center datasets demonstrate that RAS-E2E achieves better performance compared to the recent verification systems on waveforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Interviewer's Presentation Styles for Interview Practice with a Communicative Robot An Analysis of Acoustic Features for Attention Score in Thai MoCA Assessment Convolutional Time Delay Neural Network for Khmer Automatic Speech Recognition ThEconSum: an Economics-domained Dataset for Thai Text Summarization and Baseline Models Using the MQTT Broker as a Speech-Activated Medium to Control the Operation of Devices in the Smart Office
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1