具有偏置周期的超材料多尺度设计

R. Sadiwala, G. Fadel
{"title":"具有偏置周期的超材料多尺度设计","authors":"R. Sadiwala, G. Fadel","doi":"10.1115/detc2019-98341","DOIUrl":null,"url":null,"abstract":"\n Meta-materials are a class of artificial materials with a wide range of bulk properties that are different from the base material they are made of. The term meta-material in the context of this research refers to a continuous, heterogeneous structure with prescribed elastic properties. Such meta-materials are designed using Topology Optimization (TO). Tools like SIMP interpolation, mesh filtering and continuation methods are used to address the numerical issues with Topology Optimization.\n In a previous research [1], by offsetting meta-material layers by a half-width of the Unit Cell, an auxetic honeycomb-like geometry was obtained. This was the first time such a shape was observed as the result of Topology Optimization targeting the effective shear modulus using square Unit Cells. This was obtained while designing the shear beam of a non-pneumatic wheel.\n This research studies the design of meta-materials using offsets other than zero or half-widths. The same problem [1] was solved for different values of offset, and the obtained geometries and volume fractions are studied. It is concluded that it may be beneficial for designers to consider offsetting meta-material layers with offsets other than half-width, to design novel, potentially better performing structures.","PeriodicalId":365601,"journal":{"name":"Volume 2A: 45th Design Automation Conference","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Scale Design of Meta-Materials With Offset Periodicity\",\"authors\":\"R. Sadiwala, G. Fadel\",\"doi\":\"10.1115/detc2019-98341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Meta-materials are a class of artificial materials with a wide range of bulk properties that are different from the base material they are made of. The term meta-material in the context of this research refers to a continuous, heterogeneous structure with prescribed elastic properties. Such meta-materials are designed using Topology Optimization (TO). Tools like SIMP interpolation, mesh filtering and continuation methods are used to address the numerical issues with Topology Optimization.\\n In a previous research [1], by offsetting meta-material layers by a half-width of the Unit Cell, an auxetic honeycomb-like geometry was obtained. This was the first time such a shape was observed as the result of Topology Optimization targeting the effective shear modulus using square Unit Cells. This was obtained while designing the shear beam of a non-pneumatic wheel.\\n This research studies the design of meta-materials using offsets other than zero or half-widths. The same problem [1] was solved for different values of offset, and the obtained geometries and volume fractions are studied. It is concluded that it may be beneficial for designers to consider offsetting meta-material layers with offsets other than half-width, to design novel, potentially better performing structures.\",\"PeriodicalId\":365601,\"journal\":{\"name\":\"Volume 2A: 45th Design Automation Conference\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 45th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 45th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超材料是一类人造材料,具有广泛的体积特性,与制造它们的基础材料不同。在本研究中,“超材料”一词是指具有规定弹性特性的连续、非均质结构。这种超材料是用拓扑优化(TO)技术设计的。使用SIMP插值、网格滤波和延拓方法等工具来解决拓扑优化的数值问题。在先前的一项研究[1]中,通过将超材料层偏移半宽度的Unit Cell,获得了一种辅助蜂窝状几何结构。这是第一次观察到这样的形状,作为拓扑优化的结果,针对有效剪切模量使用方形单元格。这是在设计非气动轮的剪力梁时得到的。本研究研究使用零或半宽度以外的偏移量设计超材料。对相同的问题[1]求解不同的偏移值,并对得到的几何形状和体积分数进行了研究。由此得出结论,设计师可以考虑用半宽以外的偏移量来抵消超材料层,从而设计出新颖的、可能性能更好的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Scale Design of Meta-Materials With Offset Periodicity
Meta-materials are a class of artificial materials with a wide range of bulk properties that are different from the base material they are made of. The term meta-material in the context of this research refers to a continuous, heterogeneous structure with prescribed elastic properties. Such meta-materials are designed using Topology Optimization (TO). Tools like SIMP interpolation, mesh filtering and continuation methods are used to address the numerical issues with Topology Optimization. In a previous research [1], by offsetting meta-material layers by a half-width of the Unit Cell, an auxetic honeycomb-like geometry was obtained. This was the first time such a shape was observed as the result of Topology Optimization targeting the effective shear modulus using square Unit Cells. This was obtained while designing the shear beam of a non-pneumatic wheel. This research studies the design of meta-materials using offsets other than zero or half-widths. The same problem [1] was solved for different values of offset, and the obtained geometries and volume fractions are studied. It is concluded that it may be beneficial for designers to consider offsetting meta-material layers with offsets other than half-width, to design novel, potentially better performing structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inverse Thermo-Mechanical Processing (ITMP) Design of a Steel Rod During Hot Rolling Process Generative Design of Multi-Material Hierarchical Structures via Concurrent Topology Optimization and Conformal Geometry Method Computational Design of a Personalized Artificial Spinal Disc With a Data-Driven Design Variable Linking Heuristic Gaussian Process Based Crack Initiation Modeling for Design of Battery Anode Materials Deep Reinforcement Learning for Transfer of Control Policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1