多伯努利共轭先验多目标滤波性能评价

Yuxuan Xia, Karl Granström, L. Svensson, Á. F. García-Fernández
{"title":"多伯努利共轭先验多目标滤波性能评价","authors":"Yuxuan Xia, Karl Granström, L. Svensson, Á. F. García-Fernández","doi":"10.23919/ICIF.2017.8009710","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate the performance of labelled and unlabelled multi-Bernoulli conjugate priors for multi-target filtering. Filters are compared in two different scenarios with performance assessed using the generalised optimal sub-pattern assignment (GOSPA) metric. The first scenario under consideration is tracking of well-spaced targets. The second scenario is more challenging and considers targets in close proximity, for which filters may suffer from coalescence. We analyse various aspects of the filters in these two scenarios. Though all filters have pros and cons, the Poisson multi-Bernoulli filters arguably provide the best overall performance concerning GOSPA and computational time.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Performance evaluation of multi-bernoulli conjugate priors for multi-target filtering\",\"authors\":\"Yuxuan Xia, Karl Granström, L. Svensson, Á. F. García-Fernández\",\"doi\":\"10.23919/ICIF.2017.8009710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we evaluate the performance of labelled and unlabelled multi-Bernoulli conjugate priors for multi-target filtering. Filters are compared in two different scenarios with performance assessed using the generalised optimal sub-pattern assignment (GOSPA) metric. The first scenario under consideration is tracking of well-spaced targets. The second scenario is more challenging and considers targets in close proximity, for which filters may suffer from coalescence. We analyse various aspects of the filters in these two scenarios. Though all filters have pros and cons, the Poisson multi-Bernoulli filters arguably provide the best overall performance concerning GOSPA and computational time.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

在本文中,我们评估了标记和未标记的多重伯努利共轭先验在多目标滤波中的性能。在两种不同的场景下比较过滤器,并使用广义最优子模式分配(GOSPA)度量评估性能。正在考虑的第一个方案是跟踪间隔良好的目标。第二种情况更具挑战性,需要考虑距离很近的目标,因此过滤器可能会受到合并的影响。我们分析了这两种场景中过滤器的各个方面。尽管所有滤波器都有优缺点,但泊松多伯努利滤波器可以提供关于GOSPA和计算时间的最佳整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance evaluation of multi-bernoulli conjugate priors for multi-target filtering
In this paper, we evaluate the performance of labelled and unlabelled multi-Bernoulli conjugate priors for multi-target filtering. Filters are compared in two different scenarios with performance assessed using the generalised optimal sub-pattern assignment (GOSPA) metric. The first scenario under consideration is tracking of well-spaced targets. The second scenario is more challenging and considers targets in close proximity, for which filters may suffer from coalescence. We analyse various aspects of the filters in these two scenarios. Though all filters have pros and cons, the Poisson multi-Bernoulli filters arguably provide the best overall performance concerning GOSPA and computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1