采用协调线外延(COOL)工艺的高级CD-SEM测量方法鉴定DSA图案

T. Kato, J. Konishi, M. Ikota, S. Yamaguchi, Y. Seino, Hironobu Sato, Y. Kasahara, T. Azuma
{"title":"采用协调线外延(COOL)工艺的高级CD-SEM测量方法鉴定DSA图案","authors":"T. Kato, J. Konishi, M. Ikota, S. Yamaguchi, Y. Seino, Hironobu Sato, Y. Kasahara, T. Azuma","doi":"10.1117/12.2218605","DOIUrl":null,"url":null,"abstract":"Directed self-assembly (DSA) applying chemical epitaxy is one of the promising lithographic solutions for next generation semiconductor device manufacturing. Especially, DSA lithography using coordinated line epitaxy (COOL) process is obviously one of candidates which could be the first generation of DSA applying PS-b-PMMA block copolymer (BCP) for sub-15nm dense line patterning . DSA can enhance the pitch resolutions, and can mitigate CD errors to the values much smaller than those of the originally exposed guiding patterns. On the other hand, local line placement error often results in a worse value, with distinctive trends depending on the process conditions. To address this issue, we introduce an enhanced measurement technology of DSA line patterns with distinguishing their locations in order to evaluate nature of edge placement and roughness corresponding to individual pattern locations by using images of CD-SEM. Additionally correlations among edge roughness of each line and each space are evaluated and discussed. This method can visualize features of complicated roughness easily to control COOL process. As a result, we found the followings. (1) Line placement error and line placement roughness of DSA were slightly different each other depending on their relative position to the chemical guide patterns. (2) In middle frequency area of PSD (Power Spectral Density) analysis graphs, it was observed that shapes were sensitively changed by process conditions of chemical stripe guide size and anneals temperature. (3) Correlation coefficient analysis using PSD was able to clarify characteristics of latent defect corresponding to physical and chemical property of BCP materials.","PeriodicalId":193904,"journal":{"name":"SPIE Advanced Lithography","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Advanced CD-SEM metrology for qualification of DSA patterns using coordinated line epitaxy (COOL) process\",\"authors\":\"T. Kato, J. Konishi, M. Ikota, S. Yamaguchi, Y. Seino, Hironobu Sato, Y. Kasahara, T. Azuma\",\"doi\":\"10.1117/12.2218605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directed self-assembly (DSA) applying chemical epitaxy is one of the promising lithographic solutions for next generation semiconductor device manufacturing. Especially, DSA lithography using coordinated line epitaxy (COOL) process is obviously one of candidates which could be the first generation of DSA applying PS-b-PMMA block copolymer (BCP) for sub-15nm dense line patterning . DSA can enhance the pitch resolutions, and can mitigate CD errors to the values much smaller than those of the originally exposed guiding patterns. On the other hand, local line placement error often results in a worse value, with distinctive trends depending on the process conditions. To address this issue, we introduce an enhanced measurement technology of DSA line patterns with distinguishing their locations in order to evaluate nature of edge placement and roughness corresponding to individual pattern locations by using images of CD-SEM. Additionally correlations among edge roughness of each line and each space are evaluated and discussed. This method can visualize features of complicated roughness easily to control COOL process. As a result, we found the followings. (1) Line placement error and line placement roughness of DSA were slightly different each other depending on their relative position to the chemical guide patterns. (2) In middle frequency area of PSD (Power Spectral Density) analysis graphs, it was observed that shapes were sensitively changed by process conditions of chemical stripe guide size and anneals temperature. (3) Correlation coefficient analysis using PSD was able to clarify characteristics of latent defect corresponding to physical and chemical property of BCP materials.\",\"PeriodicalId\":193904,\"journal\":{\"name\":\"SPIE Advanced Lithography\",\"volume\":\"285 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2218605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2218605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

应用化学外延的定向自组装(DSA)是下一代半导体器件制造中有前途的光刻解决方案之一。特别是,采用协调线外延(COOL)工艺的DSA光刻技术显然是第一代应用PS-b-PMMA嵌段共聚物(BCP)进行亚15nm密集线图像化的DSA技术的候选者之一。DSA可以提高基音分辨率,并且可以将CD误差降低到比原始暴露的引导模式小得多的值。另一方面,局部线放置误差通常会导致较差的值,并根据工艺条件具有不同的趋势。为了解决这一问题,我们引入了一种增强的DSA线模式测量技术,通过CD-SEM图像来区分它们的位置,以便评估与单个模式位置对应的边缘放置和粗糙度的性质。此外,评估和讨论了每条线和每个空间的边缘粗糙度之间的相关性。该方法可以将复杂的粗糙度特征可视化,便于COOL过程的控制。结果,我们发现了以下内容。(1) DSA的线放置误差和线放置粗糙度随其相对于化学导向图案的位置而略有不同。(2)在PSD(功率谱密度)分析图的中频区域,化学条纹波导尺寸和退火温度对形状的变化非常敏感。(3)利用PSD进行相关系数分析,能够明确BCP材料理化性质对应的潜在缺陷特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced CD-SEM metrology for qualification of DSA patterns using coordinated line epitaxy (COOL) process
Directed self-assembly (DSA) applying chemical epitaxy is one of the promising lithographic solutions for next generation semiconductor device manufacturing. Especially, DSA lithography using coordinated line epitaxy (COOL) process is obviously one of candidates which could be the first generation of DSA applying PS-b-PMMA block copolymer (BCP) for sub-15nm dense line patterning . DSA can enhance the pitch resolutions, and can mitigate CD errors to the values much smaller than those of the originally exposed guiding patterns. On the other hand, local line placement error often results in a worse value, with distinctive trends depending on the process conditions. To address this issue, we introduce an enhanced measurement technology of DSA line patterns with distinguishing their locations in order to evaluate nature of edge placement and roughness corresponding to individual pattern locations by using images of CD-SEM. Additionally correlations among edge roughness of each line and each space are evaluated and discussed. This method can visualize features of complicated roughness easily to control COOL process. As a result, we found the followings. (1) Line placement error and line placement roughness of DSA were slightly different each other depending on their relative position to the chemical guide patterns. (2) In middle frequency area of PSD (Power Spectral Density) analysis graphs, it was observed that shapes were sensitively changed by process conditions of chemical stripe guide size and anneals temperature. (3) Correlation coefficient analysis using PSD was able to clarify characteristics of latent defect corresponding to physical and chemical property of BCP materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SEM based overlay measurement between resist and buried patterns Contrast optimization for 0.33NA EUV lithography Analysis of wafer heating in 14nm DUV layers GPU accelerated Monte-Carlo simulation of SEM images for metrology Lensless hyperspectral spectromicroscopy with a tabletop extreme-ultraviolet source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1