利用CO2激光下转换高效产生宽波段太赫兹的几个方面

Y. Panchenko, Y. Andreev, G. Lanskii, V. Losev, D. Lubenko
{"title":"利用CO2激光下转换高效产生宽波段太赫兹的几个方面","authors":"Y. Panchenko, Y. Andreev, G. Lanskii, V. Losev, D. Lubenko","doi":"10.1117/12.2065345","DOIUrl":null,"url":null,"abstract":"Detailed model study of THz generation by CO2 laser down-conversion in pure and solid solution crystals GaSe1-xSx is carried out for the first time. Both forward and backward collinear interactions of common (eo-e, oe-e, oe-o, oo-e, ee-o) and original (ee-e, oo-o) types are considered. Possibility of realization, phase matching angles and figure of merits are estimated for line mixing within 9 μm and 10 μm emission bands, as well between them. Dispersion properties of o- and e-wave refractive indices and absorption coefficients for GaSe, GaS and GaSe1-xSx crystals were preliminary measured by THz-TDS, approximated in the equation form and then used in the study. Estimated results are presented in the form of 3-D figures that are suitable for rapid analyses of DFG parameters. The most efficient type of interaction is eo-o type. Optimally doped (x = 0.09-0.13) GaSe1-xSx crystals are from 4 to 5 times more efficient at limit pump intensity than not doped GaSe crystals.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspects for efficient wide spectral band THz generation via CO2 laser down conversion\",\"authors\":\"Y. Panchenko, Y. Andreev, G. Lanskii, V. Losev, D. Lubenko\",\"doi\":\"10.1117/12.2065345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detailed model study of THz generation by CO2 laser down-conversion in pure and solid solution crystals GaSe1-xSx is carried out for the first time. Both forward and backward collinear interactions of common (eo-e, oe-e, oe-o, oo-e, ee-o) and original (ee-e, oo-o) types are considered. Possibility of realization, phase matching angles and figure of merits are estimated for line mixing within 9 μm and 10 μm emission bands, as well between them. Dispersion properties of o- and e-wave refractive indices and absorption coefficients for GaSe, GaS and GaSe1-xSx crystals were preliminary measured by THz-TDS, approximated in the equation form and then used in the study. Estimated results are presented in the form of 3-D figures that are suitable for rapid analyses of DFG parameters. The most efficient type of interaction is eo-o type. Optimally doped (x = 0.09-0.13) GaSe1-xSx crystals are from 4 to 5 times more efficient at limit pump intensity than not doped GaSe crystals.\",\"PeriodicalId\":293926,\"journal\":{\"name\":\"International Symposium on High Power Laser Systems and Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on High Power Laser Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2065345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on High Power Laser Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2065345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首次对纯晶体和固溶体晶体GaSe1-xSx中CO2激光下转换产生太赫兹进行了详细的模型研究。考虑了普通类型(eo-e, oe-e, oe-o, oo-e, ee-o)和原始类型(ee-e, oo-o)的前向和后向共线相互作用。估计了9 μm和10 μm发射波段内以及两者之间线混合的实现可能性、相位匹配角和优点图。利用太赫兹- tds初步测量了GaSe、GaS和GaSe1-xSx晶体的o波和e波折射率和吸收系数的色散特性,并将其近似成方程形式用于研究。估计结果以三维图形的形式呈现,适合于快速分析DFG参数。最有效的交互类型是eo-o类型。最佳掺杂(x = 0.09-0.13)的GaSe1-xSx晶体在极限泵浦强度下的效率是未掺杂GaSe晶体的4 - 5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aspects for efficient wide spectral band THz generation via CO2 laser down conversion
Detailed model study of THz generation by CO2 laser down-conversion in pure and solid solution crystals GaSe1-xSx is carried out for the first time. Both forward and backward collinear interactions of common (eo-e, oe-e, oe-o, oo-e, ee-o) and original (ee-e, oo-o) types are considered. Possibility of realization, phase matching angles and figure of merits are estimated for line mixing within 9 μm and 10 μm emission bands, as well between them. Dispersion properties of o- and e-wave refractive indices and absorption coefficients for GaSe, GaS and GaSe1-xSx crystals were preliminary measured by THz-TDS, approximated in the equation form and then used in the study. Estimated results are presented in the form of 3-D figures that are suitable for rapid analyses of DFG parameters. The most efficient type of interaction is eo-o type. Optimally doped (x = 0.09-0.13) GaSe1-xSx crystals are from 4 to 5 times more efficient at limit pump intensity than not doped GaSe crystals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer simulation of effect of conditions on discharge-excited high power gas flow CO laser TEA HF laser with a high specific radiation energy Pressure broadening coefficients for the 811.5nm Ar line and 811.3nm Kr line in rare gases Post-filamentation high-intensive light channels formation upon ultrashort laser pulses self-focusing in air Optically pumped Cs vapor lasers: pump-to-laser beam overlap optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1