J. Alglave, Luc Maranget, P. McKenney, A. Parri, A. S. Stern
{"title":"让小孩子害怕,让成年人不安:Linux内核中的并发性","authors":"J. Alglave, Luc Maranget, P. McKenney, A. Parri, A. S. Stern","doi":"10.1145/3173162.3177156","DOIUrl":null,"url":null,"abstract":"Concurrency in the Linux kernel can be a contentious topic. The Linux kernel mailing list features numerous discussions related to consistency models, including those of the more than 30 CPU architectures supported by the kernel and that of the kernel itself. How are Linux programs supposed to behave? Do they behave correctly on exotic hardware? A formal model can help address such questions. Better yet, an executable model allows programmers to experiment with the model to develop their intuition. Thus we offer a model written in the cat language, making it not only formal, but also executable by the herd simulator. We tested our model against hardware and refined it in consultation with maintainers. Finally, we formalised the fundamental law of the Read-Copy-Update synchronisation mechanism, and proved that one of its implementations satisfies this law.","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Frightening Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel\",\"authors\":\"J. Alglave, Luc Maranget, P. McKenney, A. Parri, A. S. Stern\",\"doi\":\"10.1145/3173162.3177156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concurrency in the Linux kernel can be a contentious topic. The Linux kernel mailing list features numerous discussions related to consistency models, including those of the more than 30 CPU architectures supported by the kernel and that of the kernel itself. How are Linux programs supposed to behave? Do they behave correctly on exotic hardware? A formal model can help address such questions. Better yet, an executable model allows programmers to experiment with the model to develop their intuition. Thus we offer a model written in the cat language, making it not only formal, but also executable by the herd simulator. We tested our model against hardware and refined it in consultation with maintainers. Finally, we formalised the fundamental law of the Read-Copy-Update synchronisation mechanism, and proved that one of its implementations satisfies this law.\",\"PeriodicalId\":302876,\"journal\":{\"name\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173162.3177156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3177156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frightening Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel
Concurrency in the Linux kernel can be a contentious topic. The Linux kernel mailing list features numerous discussions related to consistency models, including those of the more than 30 CPU architectures supported by the kernel and that of the kernel itself. How are Linux programs supposed to behave? Do they behave correctly on exotic hardware? A formal model can help address such questions. Better yet, an executable model allows programmers to experiment with the model to develop their intuition. Thus we offer a model written in the cat language, making it not only formal, but also executable by the herd simulator. We tested our model against hardware and refined it in consultation with maintainers. Finally, we formalised the fundamental law of the Read-Copy-Update synchronisation mechanism, and proved that one of its implementations satisfies this law.