S. Miller, A. Steiner, R. Mcbride, D. Yager-Elorriaga, N. Jordan, Y. Lau, R. Gilgenbach
{"title":"小型脉冲功率器件的电热不稳定性研究","authors":"S. Miller, A. Steiner, R. Mcbride, D. Yager-Elorriaga, N. Jordan, Y. Lau, R. Gilgenbach","doi":"10.1109/PLASMA.2017.8496083","DOIUrl":null,"url":null,"abstract":"Magnetized liner inertial fusion (MagLIF) [1, 2] is a pulsed-power driven approach to inertial confinement fusion. Electrothermal instabilities (ETI) are thought to seed Magneto-Rayleigh Taylor (MRT), sausage mode, and kink mode instabilities in the imploding liner of MagLIF [3]. Understanding ETI may provide a way to improve fusion performance in MagLIF through instability mitigation. A single-capacitor pulsed power device was built with a low peak current of 4 kA and a long risetime of 600 ns to lengthen the transition time from the solid phase to the vapor phase. We have studied ETI growth rates on this facility. These growth rates have good agreement with ETI theory [4]. Preliminary results have shown the value of this facility and a need to investigate ETI further. We report on recent modifications and improvements to the facility and plans for future ETI studies.","PeriodicalId":145705,"journal":{"name":"2017 IEEE International Conference on Plasma Science (ICOPS)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrothermal Instability Studies on a Small Pulsed Power Device\",\"authors\":\"S. Miller, A. Steiner, R. Mcbride, D. Yager-Elorriaga, N. Jordan, Y. Lau, R. Gilgenbach\",\"doi\":\"10.1109/PLASMA.2017.8496083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetized liner inertial fusion (MagLIF) [1, 2] is a pulsed-power driven approach to inertial confinement fusion. Electrothermal instabilities (ETI) are thought to seed Magneto-Rayleigh Taylor (MRT), sausage mode, and kink mode instabilities in the imploding liner of MagLIF [3]. Understanding ETI may provide a way to improve fusion performance in MagLIF through instability mitigation. A single-capacitor pulsed power device was built with a low peak current of 4 kA and a long risetime of 600 ns to lengthen the transition time from the solid phase to the vapor phase. We have studied ETI growth rates on this facility. These growth rates have good agreement with ETI theory [4]. Preliminary results have shown the value of this facility and a need to investigate ETI further. We report on recent modifications and improvements to the facility and plans for future ETI studies.\",\"PeriodicalId\":145705,\"journal\":{\"name\":\"2017 IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2017.8496083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2017.8496083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrothermal Instability Studies on a Small Pulsed Power Device
Magnetized liner inertial fusion (MagLIF) [1, 2] is a pulsed-power driven approach to inertial confinement fusion. Electrothermal instabilities (ETI) are thought to seed Magneto-Rayleigh Taylor (MRT), sausage mode, and kink mode instabilities in the imploding liner of MagLIF [3]. Understanding ETI may provide a way to improve fusion performance in MagLIF through instability mitigation. A single-capacitor pulsed power device was built with a low peak current of 4 kA and a long risetime of 600 ns to lengthen the transition time from the solid phase to the vapor phase. We have studied ETI growth rates on this facility. These growth rates have good agreement with ETI theory [4]. Preliminary results have shown the value of this facility and a need to investigate ETI further. We report on recent modifications and improvements to the facility and plans for future ETI studies.