{"title":"基于混合深度神经网络和四重结构学习的柔性人体运动转换","authors":"Shu-Juan Peng, Liang Zhang, Xin Liu","doi":"10.1504/IJCSE.2021.115100","DOIUrl":null,"url":null,"abstract":"Skeletal motion transition is of crucial importance to the animation creation. In this paper, we propose a hybrid deep learning framework that allows for efficient human motion transition. First, we integrate a convolutional restricted Boltzmann machine with deep belief network to extract the spatio-temporal features of each motion style, featuring on appropriate detection of transition points. Then, a quadruples-like data structure is exploited for motion graph building, motion splitting and indexing. Accordingly, the similar frames fulfilling the transition segments can be efficiently retrieved. Meanwhile, the transition length is reasonably computed according to the average speed of the motion joints. As a result, different kinds of diverse motions can be well transited with satisfactory performance. The experimental results show that the proposed transition approach brings substantial improvements over the state-of-the-art methods.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible human motion transition via hybrid deep neural network and quadruple-like structure learning\",\"authors\":\"Shu-Juan Peng, Liang Zhang, Xin Liu\",\"doi\":\"10.1504/IJCSE.2021.115100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skeletal motion transition is of crucial importance to the animation creation. In this paper, we propose a hybrid deep learning framework that allows for efficient human motion transition. First, we integrate a convolutional restricted Boltzmann machine with deep belief network to extract the spatio-temporal features of each motion style, featuring on appropriate detection of transition points. Then, a quadruples-like data structure is exploited for motion graph building, motion splitting and indexing. Accordingly, the similar frames fulfilling the transition segments can be efficiently retrieved. Meanwhile, the transition length is reasonably computed according to the average speed of the motion joints. As a result, different kinds of diverse motions can be well transited with satisfactory performance. The experimental results show that the proposed transition approach brings substantial improvements over the state-of-the-art methods.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSE.2021.115100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2021.115100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible human motion transition via hybrid deep neural network and quadruple-like structure learning
Skeletal motion transition is of crucial importance to the animation creation. In this paper, we propose a hybrid deep learning framework that allows for efficient human motion transition. First, we integrate a convolutional restricted Boltzmann machine with deep belief network to extract the spatio-temporal features of each motion style, featuring on appropriate detection of transition points. Then, a quadruples-like data structure is exploited for motion graph building, motion splitting and indexing. Accordingly, the similar frames fulfilling the transition segments can be efficiently retrieved. Meanwhile, the transition length is reasonably computed according to the average speed of the motion joints. As a result, different kinds of diverse motions can be well transited with satisfactory performance. The experimental results show that the proposed transition approach brings substantial improvements over the state-of-the-art methods.