基于混合深度神经网络和四重结构学习的柔性人体运动转换

Shu-Juan Peng, Liang Zhang, Xin Liu
{"title":"基于混合深度神经网络和四重结构学习的柔性人体运动转换","authors":"Shu-Juan Peng, Liang Zhang, Xin Liu","doi":"10.1504/IJCSE.2021.115100","DOIUrl":null,"url":null,"abstract":"Skeletal motion transition is of crucial importance to the animation creation. In this paper, we propose a hybrid deep learning framework that allows for efficient human motion transition. First, we integrate a convolutional restricted Boltzmann machine with deep belief network to extract the spatio-temporal features of each motion style, featuring on appropriate detection of transition points. Then, a quadruples-like data structure is exploited for motion graph building, motion splitting and indexing. Accordingly, the similar frames fulfilling the transition segments can be efficiently retrieved. Meanwhile, the transition length is reasonably computed according to the average speed of the motion joints. As a result, different kinds of diverse motions can be well transited with satisfactory performance. The experimental results show that the proposed transition approach brings substantial improvements over the state-of-the-art methods.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible human motion transition via hybrid deep neural network and quadruple-like structure learning\",\"authors\":\"Shu-Juan Peng, Liang Zhang, Xin Liu\",\"doi\":\"10.1504/IJCSE.2021.115100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skeletal motion transition is of crucial importance to the animation creation. In this paper, we propose a hybrid deep learning framework that allows for efficient human motion transition. First, we integrate a convolutional restricted Boltzmann machine with deep belief network to extract the spatio-temporal features of each motion style, featuring on appropriate detection of transition points. Then, a quadruples-like data structure is exploited for motion graph building, motion splitting and indexing. Accordingly, the similar frames fulfilling the transition segments can be efficiently retrieved. Meanwhile, the transition length is reasonably computed according to the average speed of the motion joints. As a result, different kinds of diverse motions can be well transited with satisfactory performance. The experimental results show that the proposed transition approach brings substantial improvements over the state-of-the-art methods.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSE.2021.115100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2021.115100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨骼运动过渡对动画创作至关重要。在本文中,我们提出了一个混合深度学习框架,允许有效的人体运动转换。首先,我们将卷积受限玻尔兹曼机与深度信念网络相结合,提取每种运动风格的时空特征,并适当检测过渡点。然后,利用类似四重组的数据结构进行运动图的构建、运动分割和索引。因此,可以有效地检索满足过渡段的相似帧。同时,根据运动关节的平均速度合理地计算了过渡长度。因此,可以很好地传递各种不同的运动,并具有满意的性能。实验结果表明,所提出的过渡方法比现有的方法有了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible human motion transition via hybrid deep neural network and quadruple-like structure learning
Skeletal motion transition is of crucial importance to the animation creation. In this paper, we propose a hybrid deep learning framework that allows for efficient human motion transition. First, we integrate a convolutional restricted Boltzmann machine with deep belief network to extract the spatio-temporal features of each motion style, featuring on appropriate detection of transition points. Then, a quadruples-like data structure is exploited for motion graph building, motion splitting and indexing. Accordingly, the similar frames fulfilling the transition segments can be efficiently retrieved. Meanwhile, the transition length is reasonably computed according to the average speed of the motion joints. As a result, different kinds of diverse motions can be well transited with satisfactory performance. The experimental results show that the proposed transition approach brings substantial improvements over the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1