{"title":"抗阻训练和叶酸纳米脂质体对阿尔茨海默病大鼠脑海马多巴胺受体的同步影响","authors":"F. Nameni, Fatemeh Firuzmand","doi":"10.34172/hmj.2023.3053","DOIUrl":null,"url":null,"abstract":"Background: Alzheimer’s is progressive dementia with loss of nerve cells. Physical activity and the use of nano-pharmaceutical supplements may prevent the progression of Alzheimer’s. The aim of this study was to investigate the effects of resistance training and Folate nano-liposome on the expression of D1 and D2 receptors in the hippocampal tissue of Alzheimer’s rats. Methods: Thirty-three male Wistar rats at the age of eight weeks were prepared from Pasteur Institute and randomly divided into 5 groups (healthy control, Alzheimer’s control, Alzheimer+resistance training, Alzheimer+Folate nano-liposomes, and Alzheimer+resistance training+Folate nano-liposomes). Alzheimer’s was induced, and Folate nano-liposomes were injected as a supplement. The animals were anesthetized, and the hippocampus was analyzed after the last training session. Eventually, a one-way ANOVA test was used to estimate the differences between groups (P≤0.05). Results: The results of one-way ANOVA showed a significant difference between the groups in terms of D1 mRNA and D2 mRNA (P≤0.000). Based on the results of the Bonferroni post hoc test, there was a significant difference between the control group and the Alzheimer’s, Alzheimer’s+resistance training, and Alzheimer’s+Folate nano-liposomes. Similarly, a significant difference was found between the Alzheimer’s group and Alzheimer’s+resistance training and Alzheimer’s+resistance training+Folate nano-liposomes (P≤0.05). Conclusion: Resistance training and Folate nano-liposomes changed the content of D1 and D2 in the brain after Alzheimer’s induction. These changes may be partly due to the synergistic effect of physical activity and nano-pharmaceuticals on preventing or reducing the detrimental effects of pathological conditions. Inflammatory factors appear to be associated with neurotrophic factors during activity and exercise in neurodegenerative diseases.","PeriodicalId":271947,"journal":{"name":"Hormozgan Medical Journal","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Effect of Resistance Training and Folate Nano-liposome on Dopamine Receptors in the Brain Hippocampus of Alzheimer’s Rats\",\"authors\":\"F. Nameni, Fatemeh Firuzmand\",\"doi\":\"10.34172/hmj.2023.3053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Alzheimer’s is progressive dementia with loss of nerve cells. Physical activity and the use of nano-pharmaceutical supplements may prevent the progression of Alzheimer’s. The aim of this study was to investigate the effects of resistance training and Folate nano-liposome on the expression of D1 and D2 receptors in the hippocampal tissue of Alzheimer’s rats. Methods: Thirty-three male Wistar rats at the age of eight weeks were prepared from Pasteur Institute and randomly divided into 5 groups (healthy control, Alzheimer’s control, Alzheimer+resistance training, Alzheimer+Folate nano-liposomes, and Alzheimer+resistance training+Folate nano-liposomes). Alzheimer’s was induced, and Folate nano-liposomes were injected as a supplement. The animals were anesthetized, and the hippocampus was analyzed after the last training session. Eventually, a one-way ANOVA test was used to estimate the differences between groups (P≤0.05). Results: The results of one-way ANOVA showed a significant difference between the groups in terms of D1 mRNA and D2 mRNA (P≤0.000). Based on the results of the Bonferroni post hoc test, there was a significant difference between the control group and the Alzheimer’s, Alzheimer’s+resistance training, and Alzheimer’s+Folate nano-liposomes. Similarly, a significant difference was found between the Alzheimer’s group and Alzheimer’s+resistance training and Alzheimer’s+resistance training+Folate nano-liposomes (P≤0.05). Conclusion: Resistance training and Folate nano-liposomes changed the content of D1 and D2 in the brain after Alzheimer’s induction. These changes may be partly due to the synergistic effect of physical activity and nano-pharmaceuticals on preventing or reducing the detrimental effects of pathological conditions. Inflammatory factors appear to be associated with neurotrophic factors during activity and exercise in neurodegenerative diseases.\",\"PeriodicalId\":271947,\"journal\":{\"name\":\"Hormozgan Medical Journal\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormozgan Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/hmj.2023.3053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormozgan Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/hmj.2023.3053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simultaneous Effect of Resistance Training and Folate Nano-liposome on Dopamine Receptors in the Brain Hippocampus of Alzheimer’s Rats
Background: Alzheimer’s is progressive dementia with loss of nerve cells. Physical activity and the use of nano-pharmaceutical supplements may prevent the progression of Alzheimer’s. The aim of this study was to investigate the effects of resistance training and Folate nano-liposome on the expression of D1 and D2 receptors in the hippocampal tissue of Alzheimer’s rats. Methods: Thirty-three male Wistar rats at the age of eight weeks were prepared from Pasteur Institute and randomly divided into 5 groups (healthy control, Alzheimer’s control, Alzheimer+resistance training, Alzheimer+Folate nano-liposomes, and Alzheimer+resistance training+Folate nano-liposomes). Alzheimer’s was induced, and Folate nano-liposomes were injected as a supplement. The animals were anesthetized, and the hippocampus was analyzed after the last training session. Eventually, a one-way ANOVA test was used to estimate the differences between groups (P≤0.05). Results: The results of one-way ANOVA showed a significant difference between the groups in terms of D1 mRNA and D2 mRNA (P≤0.000). Based on the results of the Bonferroni post hoc test, there was a significant difference between the control group and the Alzheimer’s, Alzheimer’s+resistance training, and Alzheimer’s+Folate nano-liposomes. Similarly, a significant difference was found between the Alzheimer’s group and Alzheimer’s+resistance training and Alzheimer’s+resistance training+Folate nano-liposomes (P≤0.05). Conclusion: Resistance training and Folate nano-liposomes changed the content of D1 and D2 in the brain after Alzheimer’s induction. These changes may be partly due to the synergistic effect of physical activity and nano-pharmaceuticals on preventing or reducing the detrimental effects of pathological conditions. Inflammatory factors appear to be associated with neurotrophic factors during activity and exercise in neurodegenerative diseases.