基于特征选择和支持向量分类器的混合软件可靠性预测模型

Suneel Kumar Rath, M. Sahu, S. P. Das, S. Mohapatra
{"title":"基于特征选择和支持向量分类器的混合软件可靠性预测模型","authors":"Suneel Kumar Rath, M. Sahu, S. P. Das, S. Mohapatra","doi":"10.1109/ESCI53509.2022.9758339","DOIUrl":null,"url":null,"abstract":"The primary purpose of the software industry is to provide high-quality software. Software system failure is caused by faulty software components. The goal of reliable software is to reduce the amount of software programme failures. Software defect prediction is a crucial aspect of developing high-quality software. One can predict software failures by implement essential prediction metrics and previous fault information. A good software fault prediction model makes testing easier while also improving the quality and consistency of software. For defect prediction systems based on diverse parameters, several methodologies have been proposed. However, none of the models meet the criteria for software reliability defect prediction. So in this article we proposed a hybrid software reliability model using feature selection and support vector classifier. In terms of software reliability defect prediction, the provided methodology is acceptable for different software metrics with experimental approvals utilizing a standard dataset. In the methodology, the NASA Metrics Data Program datasets are used for real-time verification and validation.","PeriodicalId":436539,"journal":{"name":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid Software Reliability Prediction Model Using Feature Selection and Support Vector Classifier\",\"authors\":\"Suneel Kumar Rath, M. Sahu, S. P. Das, S. Mohapatra\",\"doi\":\"10.1109/ESCI53509.2022.9758339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary purpose of the software industry is to provide high-quality software. Software system failure is caused by faulty software components. The goal of reliable software is to reduce the amount of software programme failures. Software defect prediction is a crucial aspect of developing high-quality software. One can predict software failures by implement essential prediction metrics and previous fault information. A good software fault prediction model makes testing easier while also improving the quality and consistency of software. For defect prediction systems based on diverse parameters, several methodologies have been proposed. However, none of the models meet the criteria for software reliability defect prediction. So in this article we proposed a hybrid software reliability model using feature selection and support vector classifier. In terms of software reliability defect prediction, the provided methodology is acceptable for different software metrics with experimental approvals utilizing a standard dataset. In the methodology, the NASA Metrics Data Program datasets are used for real-time verification and validation.\",\"PeriodicalId\":436539,\"journal\":{\"name\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCI53509.2022.9758339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCI53509.2022.9758339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

软件行业的主要目的是提供高质量的软件。软件系统故障是由软件组件故障引起的。可靠软件的目标是减少软件程序失败的数量。软件缺陷预测是开发高质量软件的一个关键方面。可以通过实现基本的预测度量和先前的故障信息来预测软件故障。一个好的软件故障预测模型可以使测试更容易,同时也可以提高软件的质量和一致性。对于基于不同参数的缺陷预测系统,已经提出了几种方法。然而,这些模型都不满足软件可靠性缺陷预测的标准。因此,本文提出了一种基于特征选择和支持向量分类器的混合软件可靠性模型。在软件可靠性缺陷预测方面,所提供的方法对于使用标准数据集的不同软件度量是可接受的。在方法中,NASA计量数据计划数据集用于实时验证和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Software Reliability Prediction Model Using Feature Selection and Support Vector Classifier
The primary purpose of the software industry is to provide high-quality software. Software system failure is caused by faulty software components. The goal of reliable software is to reduce the amount of software programme failures. Software defect prediction is a crucial aspect of developing high-quality software. One can predict software failures by implement essential prediction metrics and previous fault information. A good software fault prediction model makes testing easier while also improving the quality and consistency of software. For defect prediction systems based on diverse parameters, several methodologies have been proposed. However, none of the models meet the criteria for software reliability defect prediction. So in this article we proposed a hybrid software reliability model using feature selection and support vector classifier. In terms of software reliability defect prediction, the provided methodology is acceptable for different software metrics with experimental approvals utilizing a standard dataset. In the methodology, the NASA Metrics Data Program datasets are used for real-time verification and validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Response Mechanism in Vehicular Cooperative Caching for C-V2X Networks A Modified Multiband Antenna for 5G Communication Deep Learning-Based Comparative Study to Detect Polyp Removal in Endoscopic Images A Multiple Stage Deep Learning Model for NID in MANETs Automated Diagnosis of Pneumonia through Capsule Network in conjunction with ResNet50v2 model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1