{"title":"扩展对象速度估计的改进","authors":"J. Ru, Cuichun Xu","doi":"10.23919/ICIF.2017.8009882","DOIUrl":null,"url":null,"abstract":"Conventional point object model based automotive radar tracking system assumes at most one detection received from the target object at a time. However, in real applications for an extended object, such as a passenger car, located within a close range to a high-resolution radar or LIDAR, the system usually receives multiple reflections from different parts of the object. This can introduce large bias into a velocity estimation performed by a point object model based tracking system. Doppler-azimuth profile based approach accounts for the cluster of detections and could give a very accurate velocity vector of the extended object. However, depending on the position and orientation of the object, the linear equation set could be ill-conditioned, in which case the estimated velocity will suffer from substantial error. In this paper, we first propose a new approach to estimate the heading of a moving object using principle component analysis based on the detection cluster trajectory. We then propose an approach to fuse the three above-mentioned velocity estimators as each estimator faces challenges in different situations. Road data from a 77GHz radar is used for performance illustration.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improvement on velocity estimation of an extended object\",\"authors\":\"J. Ru, Cuichun Xu\",\"doi\":\"10.23919/ICIF.2017.8009882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional point object model based automotive radar tracking system assumes at most one detection received from the target object at a time. However, in real applications for an extended object, such as a passenger car, located within a close range to a high-resolution radar or LIDAR, the system usually receives multiple reflections from different parts of the object. This can introduce large bias into a velocity estimation performed by a point object model based tracking system. Doppler-azimuth profile based approach accounts for the cluster of detections and could give a very accurate velocity vector of the extended object. However, depending on the position and orientation of the object, the linear equation set could be ill-conditioned, in which case the estimated velocity will suffer from substantial error. In this paper, we first propose a new approach to estimate the heading of a moving object using principle component analysis based on the detection cluster trajectory. We then propose an approach to fuse the three above-mentioned velocity estimators as each estimator faces challenges in different situations. Road data from a 77GHz radar is used for performance illustration.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improvement on velocity estimation of an extended object
Conventional point object model based automotive radar tracking system assumes at most one detection received from the target object at a time. However, in real applications for an extended object, such as a passenger car, located within a close range to a high-resolution radar or LIDAR, the system usually receives multiple reflections from different parts of the object. This can introduce large bias into a velocity estimation performed by a point object model based tracking system. Doppler-azimuth profile based approach accounts for the cluster of detections and could give a very accurate velocity vector of the extended object. However, depending on the position and orientation of the object, the linear equation set could be ill-conditioned, in which case the estimated velocity will suffer from substantial error. In this paper, we first propose a new approach to estimate the heading of a moving object using principle component analysis based on the detection cluster trajectory. We then propose an approach to fuse the three above-mentioned velocity estimators as each estimator faces challenges in different situations. Road data from a 77GHz radar is used for performance illustration.