分析了LHOKSUMAWE市电能选区的NAIVE BAYES模型

M. Sadli, Fajriana Fajriana, Wahyu Fuadi, Ermatita Ermatita, Iwan Pahendra
{"title":"分析了LHOKSUMAWE市电能选区的NAIVE BAYES模型","authors":"M. Sadli, Fajriana Fajriana, Wahyu Fuadi, Ermatita Ermatita, Iwan Pahendra","doi":"10.30865/komik.v2i1.971","DOIUrl":null,"url":null,"abstract":"Electricity subsidy is provided for all 450 VA power household customers and 900 VA power household customers who are poor and disadvantaged. However, there are many facts that household customers with 450 VA power are capable and 900 VA power household customers consist of capable households, boarding houses or luxury rented. Households are able to use more electricity than poor households. This paper describe to the identification of household customers' electrical power in the Lhokseumawe city to facilitate PLN in classifying customer power by using the Naive Bayes method. Naive bayes value variables used in this study are: monthly income, highest diploma, last job, house area, subscription fee and government registered household. The classification of household customer power is grouped into three categories, namely low (450 VA down), medium (900 VA) and high (above 1300 VA).. Based on household customer data that is used as training data, the Naive Bayes method is able to classify the customer data tested. So the Naive Bayes method successfully predicts the magnitude of the probability of household electrical power with an accuracy percentage of 80%.Keywords: Electricity, Naive Bayes,  CBS, low birth weight, subsidy","PeriodicalId":246167,"journal":{"name":"KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALISIS MODEL NAIVE BAYES UNTUK IDENTIFIKASI PENGGOLONGAN DAYA LISTRIK DI KOTA LHOKSUMAWE\",\"authors\":\"M. Sadli, Fajriana Fajriana, Wahyu Fuadi, Ermatita Ermatita, Iwan Pahendra\",\"doi\":\"10.30865/komik.v2i1.971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity subsidy is provided for all 450 VA power household customers and 900 VA power household customers who are poor and disadvantaged. However, there are many facts that household customers with 450 VA power are capable and 900 VA power household customers consist of capable households, boarding houses or luxury rented. Households are able to use more electricity than poor households. This paper describe to the identification of household customers' electrical power in the Lhokseumawe city to facilitate PLN in classifying customer power by using the Naive Bayes method. Naive bayes value variables used in this study are: monthly income, highest diploma, last job, house area, subscription fee and government registered household. The classification of household customer power is grouped into three categories, namely low (450 VA down), medium (900 VA) and high (above 1300 VA).. Based on household customer data that is used as training data, the Naive Bayes method is able to classify the customer data tested. So the Naive Bayes method successfully predicts the magnitude of the probability of household electrical power with an accuracy percentage of 80%.Keywords: Electricity, Naive Bayes,  CBS, low birth weight, subsidy\",\"PeriodicalId\":246167,\"journal\":{\"name\":\"KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30865/komik.v2i1.971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30865/komik.v2i1.971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

所有450伏安电力家庭客户及900伏安电力家庭贫困及处境不利客户均可获得电力补贴。但是,拥有450伏安电力的家庭用户是有能力的,而拥有900伏安电力的家庭用户是由有能力的家庭、寄宿公寓或豪华租赁组成的。富裕家庭能够比贫困家庭使用更多的电力。本文描述了对Lhokseumawe市家庭用户电力的识别,以方便PLN使用朴素贝叶斯方法对用户电力进行分类。本研究中使用的朴素贝叶斯值变量为:月收入、最高学历、上一份工作、房屋面积、订阅费和政府户籍。家庭客户功率的分类分为三类,即低(450va以下),中(900va)和高(1300va以上)。朴素贝叶斯方法以家庭客户数据作为训练数据,对被测客户数据进行分类。因此,朴素贝叶斯方法成功地预测了家庭用电概率的大小,准确率达到80%。关键词:电力,朴素贝叶斯,CBS,低出生体重,补贴
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANALISIS MODEL NAIVE BAYES UNTUK IDENTIFIKASI PENGGOLONGAN DAYA LISTRIK DI KOTA LHOKSUMAWE
Electricity subsidy is provided for all 450 VA power household customers and 900 VA power household customers who are poor and disadvantaged. However, there are many facts that household customers with 450 VA power are capable and 900 VA power household customers consist of capable households, boarding houses or luxury rented. Households are able to use more electricity than poor households. This paper describe to the identification of household customers' electrical power in the Lhokseumawe city to facilitate PLN in classifying customer power by using the Naive Bayes method. Naive bayes value variables used in this study are: monthly income, highest diploma, last job, house area, subscription fee and government registered household. The classification of household customer power is grouped into three categories, namely low (450 VA down), medium (900 VA) and high (above 1300 VA).. Based on household customer data that is used as training data, the Naive Bayes method is able to classify the customer data tested. So the Naive Bayes method successfully predicts the magnitude of the probability of household electrical power with an accuracy percentage of 80%.Keywords: Electricity, Naive Bayes,  CBS, low birth weight, subsidy
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PENERAPAN ALGORITMA K-MEDOIDS CLUSTERING UNTUK PENGELOMPOKKAN PENYEBARAN DIARE DI KOTA MEDAN (STUDI KASUS: KANTOR DINAS KESEHATAN KOTA MEDAN) SISTEM PENDUKUNG KEPUTUSAN DALAM PENENTUAN PENERIMA RASTRA (BERAS SEJAHTERA) MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (STUDI KASUS DESA KARANG BANGUN) SISTEM PENDUKUNG KEPUTUSAN REKOMENDASI PEMILIHAN SMARTPHONE TERBAIK MENGGUNAKAN METODE TOPSIS SISTEM PENDUKUNG KEPUTUSAN DALAM MENENTUKAN PRIORITAS PENDISTRIBUSIAN DARAH MENERAPKAN METODE THE EXTENDED PROMETHEE II PADA KANTOR PALANG MERAH INDONESIA(PMI) PERANCANGAN APLIKASI MOBILE CATALOG MODEL RAMBUT DENGAN MENERAPKAN ALGORITMA CROCHEMORE PERRIN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1