一种结合CRF和语法规则来识别opinion_holder的方法

Yuan Kuang, Yanquan Zhou, Huacan He
{"title":"一种结合CRF和语法规则来识别opinion_holder的方法","authors":"Yuan Kuang, Yanquan Zhou, Huacan He","doi":"10.1109/NLPKE.2010.5587848","DOIUrl":null,"url":null,"abstract":"This paper presents another aspect of sentiment analysis: identifying opinion_holder in the opinionated sentences. To extract opinion_holder, we firstly explore Conditional Random Field(CRF) based on six features including contextual, opinionated_trigger words, POS tags, named entity, dependency and proposed sentence structure feature, and dependency is adjusted to be better helpful for containing contextual dependency information. Then we propose two novel syntactic rules with opinionated_trigger words to directly identify opinion_holder from the parse trees. The results show that the precision from CRF is much higher than that of syntactic rules, while the recall is lower than. So we combine CRF with syntactic rules used as additional three features including HolderNode, ChunkPosition and Paths for the CRF to train our model. The combination results of the system illustrate the higher recall and higher F-measure under the almost same high precision.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A combination method of CRF with syntactic rules to identify opinion_holder\",\"authors\":\"Yuan Kuang, Yanquan Zhou, Huacan He\",\"doi\":\"10.1109/NLPKE.2010.5587848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents another aspect of sentiment analysis: identifying opinion_holder in the opinionated sentences. To extract opinion_holder, we firstly explore Conditional Random Field(CRF) based on six features including contextual, opinionated_trigger words, POS tags, named entity, dependency and proposed sentence structure feature, and dependency is adjusted to be better helpful for containing contextual dependency information. Then we propose two novel syntactic rules with opinionated_trigger words to directly identify opinion_holder from the parse trees. The results show that the precision from CRF is much higher than that of syntactic rules, while the recall is lower than. So we combine CRF with syntactic rules used as additional three features including HolderNode, ChunkPosition and Paths for the CRF to train our model. The combination results of the system illustrate the higher recall and higher F-measure under the almost same high precision.\",\"PeriodicalId\":259975,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLPKE.2010.5587848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了情感分析的另一个方面:在自以为是的句子中识别opinion_holder。为了提取opinion_holder,我们首先基于上下文、opinionated_trigger词、POS标签、命名实体、依赖关系和建议句子结构特征六个特征挖掘条件随机场(Conditional Random Field, CRF),并对依赖关系进行调整,以更好地帮助包含上下文依赖信息。然后,我们提出了两种新的带有opinionated_trigger词的句法规则,从解析树中直接识别opinion_holder。结果表明,CRF的准确率远高于句法规则,而查全率则低于句法规则。因此,我们将CRF与语法规则结合使用,作为额外的三个特征,包括HolderNode, ChunkPosition和Paths,用于CRF训练我们的模型。系统的组合结果表明,在几乎相同的高精度下,系统具有较高的查全率和较高的f值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A combination method of CRF with syntactic rules to identify opinion_holder
This paper presents another aspect of sentiment analysis: identifying opinion_holder in the opinionated sentences. To extract opinion_holder, we firstly explore Conditional Random Field(CRF) based on six features including contextual, opinionated_trigger words, POS tags, named entity, dependency and proposed sentence structure feature, and dependency is adjusted to be better helpful for containing contextual dependency information. Then we propose two novel syntactic rules with opinionated_trigger words to directly identify opinion_holder from the parse trees. The results show that the precision from CRF is much higher than that of syntactic rules, while the recall is lower than. So we combine CRF with syntactic rules used as additional three features including HolderNode, ChunkPosition and Paths for the CRF to train our model. The combination results of the system illustrate the higher recall and higher F-measure under the almost same high precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dashboard: An integration and testing platform based on backboard architecture for NLP applications Chinese semantic role labeling based on semantic knowledge Transitivity in semantic relation learning Wisdom media “CAIWA Channel” based on natural language interface agent A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1