基于道路分割和路线评价的移动机器人导航。

Shinji Tanimoto, S. Muramatsu, K. Inagaki, D. Chugo, S. Yokota, H. Hashimoto
{"title":"基于道路分割和路线评价的移动机器人导航。","authors":"Shinji Tanimoto, S. Muramatsu, K. Inagaki, D. Chugo, S. Yokota, H. Hashimoto","doi":"10.1109/IECON49645.2022.9968848","DOIUrl":null,"url":null,"abstract":"In recent years, development of robots that can run independently in the same space as humans has been progressing. Most of the current navigation methods for autonomous robots use geometric information. While this method is easy to implement, it has some drawbacks, such as the need for accurate self-positioning and vulnerability to errors in sensor information. Humans do not have an exact self-position, but rather, they recognize an approximate location based on surrounding information and envision the path to the goal to reach the destination. Therefore, this study examines a navigation method that plans a route based on an abstract map, such as a hand-drawn map, and then travels independently to the destination.","PeriodicalId":125740,"journal":{"name":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","volume":"17 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile robot's navigation based on road segmentation and route evaluation.\",\"authors\":\"Shinji Tanimoto, S. Muramatsu, K. Inagaki, D. Chugo, S. Yokota, H. Hashimoto\",\"doi\":\"10.1109/IECON49645.2022.9968848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, development of robots that can run independently in the same space as humans has been progressing. Most of the current navigation methods for autonomous robots use geometric information. While this method is easy to implement, it has some drawbacks, such as the need for accurate self-positioning and vulnerability to errors in sensor information. Humans do not have an exact self-position, but rather, they recognize an approximate location based on surrounding information and envision the path to the goal to reach the destination. Therefore, this study examines a navigation method that plans a route based on an abstract map, such as a hand-drawn map, and then travels independently to the destination.\",\"PeriodicalId\":125740,\"journal\":{\"name\":\"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"17 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON49645.2022.9968848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON49645.2022.9968848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,能够在与人类相同的空间中独立运行的机器人的开发取得了进展。目前自主机器人的导航方法大多使用几何信息。虽然该方法易于实现,但也存在一些缺点,如需要精确的自定位,容易受到传感器信息错误的影响。人类没有精确的自我定位,而是根据周围的信息识别出一个大致的位置,并设想到达目的地的路径。因此,本研究考察了一种基于抽象地图(如手绘地图)规划路线,然后独立行驶到目的地的导航方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mobile robot's navigation based on road segmentation and route evaluation.
In recent years, development of robots that can run independently in the same space as humans has been progressing. Most of the current navigation methods for autonomous robots use geometric information. While this method is easy to implement, it has some drawbacks, such as the need for accurate self-positioning and vulnerability to errors in sensor information. Humans do not have an exact self-position, but rather, they recognize an approximate location based on surrounding information and envision the path to the goal to reach the destination. Therefore, this study examines a navigation method that plans a route based on an abstract map, such as a hand-drawn map, and then travels independently to the destination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency Evaluation of the Xilinx DPU Towards Energy Efficiency Analysis of the Bipolar Voltage Bus Balancing of a DC Microgrid with Bidirectional Converters Design Method of Coreless Coil Considering Power, Efficiency and Magnetic Field Leakage in Wireless Power Transfer Distributed Finite-time Coverage Control of Multi-quadrotor Systems Day-Ahead PV Power Forecasting for Control Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1