Panoptic DVS:用于能量可扩展CMOS设计的细粒度动态电压缩放框架

M. Putic, Liang Di, B. Calhoun, J. Lach
{"title":"Panoptic DVS:用于能量可扩展CMOS设计的细粒度动态电压缩放框架","authors":"M. Putic, Liang Di, B. Calhoun, J. Lach","doi":"10.1109/ICCD.2009.5413110","DOIUrl":null,"url":null,"abstract":"The energy efficiency of a CMOS architecture processing dynamic workloads directly affects its ability to provide long battery lifetimes while maintaining required application performance. Existing scalable architecture design approaches are often limited in scope, focusing either only on circuit-level optimizations or architectural adaptations individually. In this paper, we propose a circuit/architecture co-design methodology called Panoptic Dynamic Voltage Scaling (PDVS) that makes more efficient use of common circuit structures and algorithm-level processing rate control. PDVS expands upon prior work by using multiple component-level PMOS header switches to enable fine-grained rate control, allowing efficient dithering among statically scheduled algorithms with sub-block energy savings. This way, PDVS is able to achieve a wide variety of processing rates to match incoming workload as closely as possible, while each iteration takes less energy to process than on architectures with coarser levels of rate control. Measurements taken from a fabricated 90nm test chip characterize both savings and overheads and are used to inform PDVS synthesis decisions. Results show that PDVS consumes up to 34% and 44% less energy than Multi-VDD and Single-VDD systems, respectively.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Panoptic DVS: A fine-grained dynamic voltage scaling framework for energy scalable CMOS design\",\"authors\":\"M. Putic, Liang Di, B. Calhoun, J. Lach\",\"doi\":\"10.1109/ICCD.2009.5413110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy efficiency of a CMOS architecture processing dynamic workloads directly affects its ability to provide long battery lifetimes while maintaining required application performance. Existing scalable architecture design approaches are often limited in scope, focusing either only on circuit-level optimizations or architectural adaptations individually. In this paper, we propose a circuit/architecture co-design methodology called Panoptic Dynamic Voltage Scaling (PDVS) that makes more efficient use of common circuit structures and algorithm-level processing rate control. PDVS expands upon prior work by using multiple component-level PMOS header switches to enable fine-grained rate control, allowing efficient dithering among statically scheduled algorithms with sub-block energy savings. This way, PDVS is able to achieve a wide variety of processing rates to match incoming workload as closely as possible, while each iteration takes less energy to process than on architectures with coarser levels of rate control. Measurements taken from a fabricated 90nm test chip characterize both savings and overheads and are used to inform PDVS synthesis decisions. Results show that PDVS consumes up to 34% and 44% less energy than Multi-VDD and Single-VDD systems, respectively.\",\"PeriodicalId\":256908,\"journal\":{\"name\":\"2009 IEEE International Conference on Computer Design\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2009.5413110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

CMOS架构处理动态工作负载的能效直接影响其在保持所需应用性能的同时提供较长电池寿命的能力。现有的可伸缩架构设计方法通常在范围上受到限制,要么只关注电路级优化,要么单独关注架构调整。在本文中,我们提出了一种电路/架构协同设计方法,称为泛光动态电压缩放(PDVS),它可以更有效地利用通用电路结构和算法级处理速率控制。pdv通过使用多个组件级PMOS报头开关扩展了先前的工作,实现了细粒度的速率控制,允许在静态调度算法之间进行有效的抖动,并节省了子块能源。通过这种方式,pdv能够实现各种各样的处理速率,以尽可能接近地匹配传入的工作负载,而每次迭代处理所需的能量比具有粗糙速率控制级别的体系结构要少。从制造的90nm测试芯片进行的测量具有节省成本和开销的特点,并用于为pdv合成决策提供信息。结果表明,与多vdd和单vdd系统相比,PDVS的能耗分别减少34%和44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Panoptic DVS: A fine-grained dynamic voltage scaling framework for energy scalable CMOS design
The energy efficiency of a CMOS architecture processing dynamic workloads directly affects its ability to provide long battery lifetimes while maintaining required application performance. Existing scalable architecture design approaches are often limited in scope, focusing either only on circuit-level optimizations or architectural adaptations individually. In this paper, we propose a circuit/architecture co-design methodology called Panoptic Dynamic Voltage Scaling (PDVS) that makes more efficient use of common circuit structures and algorithm-level processing rate control. PDVS expands upon prior work by using multiple component-level PMOS header switches to enable fine-grained rate control, allowing efficient dithering among statically scheduled algorithms with sub-block energy savings. This way, PDVS is able to achieve a wide variety of processing rates to match incoming workload as closely as possible, while each iteration takes less energy to process than on architectures with coarser levels of rate control. Measurements taken from a fabricated 90nm test chip characterize both savings and overheads and are used to inform PDVS synthesis decisions. Results show that PDVS consumes up to 34% and 44% less energy than Multi-VDD and Single-VDD systems, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical performance models for 3T1D memories A novel SoC architecture on FPGA for ultra fast face detection A Technology-Agnostic Simulation Environment (TASE) for iterative custom IC design across processes Low-overhead error detection for Networks-on-Chip Interconnect performance corners considering crosstalk noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1