表面等离子体共振传感器行为预测的量子回归模型

K. T, S. S, V. M, Mohanraj J, V. N
{"title":"表面等离子体共振传感器行为预测的量子回归模型","authors":"K. T, S. S, V. M, Mohanraj J, V. N","doi":"10.1109/WRAP54064.2022.9758179","DOIUrl":null,"url":null,"abstract":"In this paper, we made a pioneering effort for the first time to implement Quantum Neural Network regressor model to predict the sensing behavior of Surface plasmon resonance (SPR) sensor and compared the performance of the proposed model with two traditional algorithms namely Support Vector Regressor (SVR) and Artificial Neural Network (ANN) regressor. The proposed trained quantum regressor model is crucial and efficient enough as it could be used to predict the trend of the target value that is confinement loss of the SPR biosensor.","PeriodicalId":363857,"journal":{"name":"2022 Workshop on Recent Advances in Photonics (WRAP)","volume":"350 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Regression Model for the Prediction of Surface Plasmon Resonance Sensor Behaviour\",\"authors\":\"K. T, S. S, V. M, Mohanraj J, V. N\",\"doi\":\"10.1109/WRAP54064.2022.9758179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we made a pioneering effort for the first time to implement Quantum Neural Network regressor model to predict the sensing behavior of Surface plasmon resonance (SPR) sensor and compared the performance of the proposed model with two traditional algorithms namely Support Vector Regressor (SVR) and Artificial Neural Network (ANN) regressor. The proposed trained quantum regressor model is crucial and efficient enough as it could be used to predict the trend of the target value that is confinement loss of the SPR biosensor.\",\"PeriodicalId\":363857,\"journal\":{\"name\":\"2022 Workshop on Recent Advances in Photonics (WRAP)\",\"volume\":\"350 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Workshop on Recent Advances in Photonics (WRAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WRAP54064.2022.9758179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Workshop on Recent Advances in Photonics (WRAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WRAP54064.2022.9758179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首次开创性地实现了量子神经网络回归模型来预测表面等离子体共振(SPR)传感器的传感行为,并将该模型与支持向量回归(SVR)和人工神经网络回归(ANN)两种传统算法的性能进行了比较。所提出的训练后的量子回归量模型可以用来预测SPR生物传感器约束损失目标值的变化趋势,是非常重要和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Regression Model for the Prediction of Surface Plasmon Resonance Sensor Behaviour
In this paper, we made a pioneering effort for the first time to implement Quantum Neural Network regressor model to predict the sensing behavior of Surface plasmon resonance (SPR) sensor and compared the performance of the proposed model with two traditional algorithms namely Support Vector Regressor (SVR) and Artificial Neural Network (ANN) regressor. The proposed trained quantum regressor model is crucial and efficient enough as it could be used to predict the trend of the target value that is confinement loss of the SPR biosensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interplay of Modal Dispersion with Nonlinear Impairments on Mode Division Multiplexed Fibers Design and Simulation of Terahertz Wire Grid Polarizer with Sub Additional Gaps Ballistic soliton from Airy pulse Design and Optical Studies for Nanostructure Intermediate Reflector based Perovskite Silicon Tandem solar cell Terahertz Surface Plasmon Propagation in Metal Dielectric Metal Waveguide with Corrugated Surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1