基于图关注网络的COVID-19医学图像自动诊断

Yingxin Lai, Wenlong Yi, Hongyu Jiang, Tingzhuo Chen, Wenjuan Zhao, Keng-Chi Liu
{"title":"基于图关注网络的COVID-19医学图像自动诊断","authors":"Yingxin Lai, Wenlong Yi, Hongyu Jiang, Tingzhuo Chen, Wenjuan Zhao, Keng-Chi Liu","doi":"10.1109/CTS53513.2021.9562907","DOIUrl":null,"url":null,"abstract":"In view of the COVID-19 pandemic and its highly infectious characteristic, traditional artificial diagnosis based on medical imaging, though capable of detecting pulmonary lesion in human body, is found of lower efficiency. Therefore, it is particularly urgent that we design a set of accurate and automatic pneumonia diagnosis methods with aid of artificial intelligence technology, so that pneumonia in patients can be diagnosed and treated early. This study first introduces DenseNet to the Convolutional Neural Network (CNN) structure to improve sharing of characteristic information of lung image in convolutional layers and thus obtain more accurate image features. Secondly, characteristics of pneumonia disease are discriminated rapidly using the Graphic Attention Network (GAT). The authors adopt the X-ray dataset in Radiological Society of North America (RSNA) Pneumonia Detection Challenge released by Kaggle to train and verify the network. According to experimental results, the accuracy of COVID-19 diagnosis and F-Score both reach 98%. The method provides CT doctors with an end-to-end deep learning technology for pneumonia diagnosis.","PeriodicalId":371882,"journal":{"name":"2021 IV International Conference on Control in Technical Systems (CTS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Diagnosis of COVID-19 Medical Images based on Graph Attention Network\",\"authors\":\"Yingxin Lai, Wenlong Yi, Hongyu Jiang, Tingzhuo Chen, Wenjuan Zhao, Keng-Chi Liu\",\"doi\":\"10.1109/CTS53513.2021.9562907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the COVID-19 pandemic and its highly infectious characteristic, traditional artificial diagnosis based on medical imaging, though capable of detecting pulmonary lesion in human body, is found of lower efficiency. Therefore, it is particularly urgent that we design a set of accurate and automatic pneumonia diagnosis methods with aid of artificial intelligence technology, so that pneumonia in patients can be diagnosed and treated early. This study first introduces DenseNet to the Convolutional Neural Network (CNN) structure to improve sharing of characteristic information of lung image in convolutional layers and thus obtain more accurate image features. Secondly, characteristics of pneumonia disease are discriminated rapidly using the Graphic Attention Network (GAT). The authors adopt the X-ray dataset in Radiological Society of North America (RSNA) Pneumonia Detection Challenge released by Kaggle to train and verify the network. According to experimental results, the accuracy of COVID-19 diagnosis and F-Score both reach 98%. The method provides CT doctors with an end-to-end deep learning technology for pneumonia diagnosis.\",\"PeriodicalId\":371882,\"journal\":{\"name\":\"2021 IV International Conference on Control in Technical Systems (CTS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IV International Conference on Control in Technical Systems (CTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CTS53513.2021.9562907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IV International Conference on Control in Technical Systems (CTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CTS53513.2021.9562907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鉴于新冠肺炎大流行及其传染性强的特点,传统的基于医学影像的人工诊断虽然能够检测到人体肺部病变,但效率较低。因此,借助人工智能技术设计一套准确、自动的肺炎诊断方法,使患者的肺炎得到早期诊断和治疗,显得尤为迫切。本研究首先将DenseNet引入卷积神经网络(CNN)结构中,提高了卷积层肺图像特征信息的共享,从而获得更准确的图像特征。其次,利用图形注意网络(GAT)快速识别肺炎疾病的特征。作者采用Kaggle发布的北美放射学会(RSNA)肺炎检测挑战赛中的x射线数据集对网络进行训练和验证。根据实验结果,COVID-19的诊断准确率和F-Score均达到98%。该方法为CT医生提供了端到端的肺炎诊断深度学习技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Diagnosis of COVID-19 Medical Images based on Graph Attention Network
In view of the COVID-19 pandemic and its highly infectious characteristic, traditional artificial diagnosis based on medical imaging, though capable of detecting pulmonary lesion in human body, is found of lower efficiency. Therefore, it is particularly urgent that we design a set of accurate and automatic pneumonia diagnosis methods with aid of artificial intelligence technology, so that pneumonia in patients can be diagnosed and treated early. This study first introduces DenseNet to the Convolutional Neural Network (CNN) structure to improve sharing of characteristic information of lung image in convolutional layers and thus obtain more accurate image features. Secondly, characteristics of pneumonia disease are discriminated rapidly using the Graphic Attention Network (GAT). The authors adopt the X-ray dataset in Radiological Society of North America (RSNA) Pneumonia Detection Challenge released by Kaggle to train and verify the network. According to experimental results, the accuracy of COVID-19 diagnosis and F-Score both reach 98%. The method provides CT doctors with an end-to-end deep learning technology for pneumonia diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of OPC UA Technology in the Study of Models of Control Objects Development of a Radio-Controlled Tentacle Robot Design Concept of Organizational Automated Information Control System based on System Algorithms Information Technology Computer System for Processing Industrial Information for Controlling the Production of Multi-Assortment Polymeric Films Distortion Level Analysis of a 2D Median Filter with a Weighted Central Element
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1