求解全模糊线性规划问题的改进方法

D. Shelar, P. G. Andhare, S. B. Gaikwad, P. A. Thakre
{"title":"求解全模糊线性规划问题的改进方法","authors":"D. Shelar, P. G. Andhare, S. B. Gaikwad, P. A. Thakre","doi":"10.1109/ESCI53509.2022.9758376","DOIUrl":null,"url":null,"abstract":"This study intended to develop a new and improved approach to solve completely Fully Fuzzy Linear Programming Problems(FFLPP) with Symmetric Trapezoidal Fuzzy Numbers(STFN) and findings results are compared with the results of existing methods. This article, first converted Fully Fuzzy LPP to the same Crisp Linear Programming Problem (LPP) by defuzzifying STFN. It is also proposed that it be presented an efficient and time-saving method. Finally of the paper, examples are shown in support of the results obtained.","PeriodicalId":436539,"journal":{"name":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Approach for Solving Fully Fuzzy Linear Programming Problems\",\"authors\":\"D. Shelar, P. G. Andhare, S. B. Gaikwad, P. A. Thakre\",\"doi\":\"10.1109/ESCI53509.2022.9758376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study intended to develop a new and improved approach to solve completely Fully Fuzzy Linear Programming Problems(FFLPP) with Symmetric Trapezoidal Fuzzy Numbers(STFN) and findings results are compared with the results of existing methods. This article, first converted Fully Fuzzy LPP to the same Crisp Linear Programming Problem (LPP) by defuzzifying STFN. It is also proposed that it be presented an efficient and time-saving method. Finally of the paper, examples are shown in support of the results obtained.\",\"PeriodicalId\":436539,\"journal\":{\"name\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCI53509.2022.9758376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCI53509.2022.9758376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的改进方法来求解具有对称梯形模糊数(STFN)的完全完全模糊线性规划问题(FFLPP),并将研究结果与现有方法的结果进行了比较。本文首先通过对STFN去模糊化,将完全模糊线性规划问题转化为相同的清晰线性规划问题(LPP)。提出了一种高效、省时的方法。最后,通过算例对所得结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified Approach for Solving Fully Fuzzy Linear Programming Problems
This study intended to develop a new and improved approach to solve completely Fully Fuzzy Linear Programming Problems(FFLPP) with Symmetric Trapezoidal Fuzzy Numbers(STFN) and findings results are compared with the results of existing methods. This article, first converted Fully Fuzzy LPP to the same Crisp Linear Programming Problem (LPP) by defuzzifying STFN. It is also proposed that it be presented an efficient and time-saving method. Finally of the paper, examples are shown in support of the results obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Response Mechanism in Vehicular Cooperative Caching for C-V2X Networks A Modified Multiband Antenna for 5G Communication Deep Learning-Based Comparative Study to Detect Polyp Removal in Endoscopic Images A Multiple Stage Deep Learning Model for NID in MANETs Automated Diagnosis of Pneumonia through Capsule Network in conjunction with ResNet50v2 model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1