基于记录值的E-PMSE的Burr XII模型E-Bayesian估计量比较

Alla Alhamidah, Mehran Naghizadeh Qmi, A. Kiapour
{"title":"基于记录值的E-PMSE的Burr XII模型E-Bayesian估计量比较","authors":"Alla Alhamidah, Mehran Naghizadeh Qmi, A. Kiapour","doi":"10.19139/soic-2310-5070-1687","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of E-Bayesian estimation and its expected posterior mean squared error (E-PMSE) in a Burr type XII model on the basis of record values. The Bayesian and E-Bayesian estimators are computed under different prior distributions for hyperparameters. The E-PMSE of E-Bayesian estimators are calculated in order to measure the estimated risk. Performances of the E-Bayesian estimators are compared using a Monte Carlo simulation. A real data set is analyzed for illustrating the estimation results.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of E-Bayesian Estimators in Burr XII Model Using E-PMSE Based on Record Values\",\"authors\":\"Alla Alhamidah, Mehran Naghizadeh Qmi, A. Kiapour\",\"doi\":\"10.19139/soic-2310-5070-1687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of E-Bayesian estimation and its expected posterior mean squared error (E-PMSE) in a Burr type XII model on the basis of record values. The Bayesian and E-Bayesian estimators are computed under different prior distributions for hyperparameters. The E-PMSE of E-Bayesian estimators are calculated in order to measure the estimated risk. Performances of the E-Bayesian estimators are compared using a Monte Carlo simulation. A real data set is analyzed for illustrating the estimation results.\",\"PeriodicalId\":131002,\"journal\":{\"name\":\"Statistics, Optimization & Information Computing\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, Optimization & Information Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于记录值的Burr型XII模型的e -贝叶斯估计及其期望后验均方误差(E-PMSE)问题。计算了超参数在不同先验分布下的贝叶斯估计量和e -贝叶斯估计量。计算e -贝叶斯估计器的E-PMSE,以度量估计的风险。利用蒙特卡罗仿真比较了e -贝叶斯估计器的性能。通过对一个实际数据集的分析,说明了估计结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of E-Bayesian Estimators in Burr XII Model Using E-PMSE Based on Record Values
In this paper, we consider the problem of E-Bayesian estimation and its expected posterior mean squared error (E-PMSE) in a Burr type XII model on the basis of record values. The Bayesian and E-Bayesian estimators are computed under different prior distributions for hyperparameters. The E-PMSE of E-Bayesian estimators are calculated in order to measure the estimated risk. Performances of the E-Bayesian estimators are compared using a Monte Carlo simulation. A real data set is analyzed for illustrating the estimation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1