支持向量机分类器在眼癌图像检测中的应用及性能分析

D. R. D. Varma, R. Priyanka
{"title":"支持向量机分类器在眼癌图像检测中的应用及性能分析","authors":"D. R. D. Varma, R. Priyanka","doi":"10.1109/ICTACS56270.2022.9988176","DOIUrl":null,"url":null,"abstract":"The focus of the research is to identify and detect eye cancer using novel Support Vector Machine (SVM) in contrast with Decision tree (DT). Materials and Methods: Samples are analyzed using two groups with 50 eye images. The SVM algorithm was considered as g1 and g2 as a decision tree algorithm for detection of cancerous cells in the eye image. Results: SVM has achieved a notable value of 95.0% when compared with a decision tree algorithm of 87.45% with significance (p<0.05). Conclusion: The SVM algorithm has better implication accuracy of 95% to the decision tree for the analysis and detection of eye cancer.","PeriodicalId":385163,"journal":{"name":"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation and Performance Analysis of Novel Support Vector Machine Classifier for Detecting Eye Cancer Image in comparison with Decision Tree\",\"authors\":\"D. R. D. Varma, R. Priyanka\",\"doi\":\"10.1109/ICTACS56270.2022.9988176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of the research is to identify and detect eye cancer using novel Support Vector Machine (SVM) in contrast with Decision tree (DT). Materials and Methods: Samples are analyzed using two groups with 50 eye images. The SVM algorithm was considered as g1 and g2 as a decision tree algorithm for detection of cancerous cells in the eye image. Results: SVM has achieved a notable value of 95.0% when compared with a decision tree algorithm of 87.45% with significance (p<0.05). Conclusion: The SVM algorithm has better implication accuracy of 95% to the decision tree for the analysis and detection of eye cancer.\",\"PeriodicalId\":385163,\"journal\":{\"name\":\"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTACS56270.2022.9988176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTACS56270.2022.9988176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究的重点是利用支持向量机(SVM)来识别和检测眼癌,而不是使用决策树(DT)。材料与方法:采用两组50张眼图像对样本进行分析。将SVM算法视为g1和g2,作为检测眼睛图像中癌细胞的决策树算法。结果:与决策树算法的87.45%相比,SVM达到了95.0%的显著值,且具有显著性(p<0.05)。结论:SVM算法对决策树的隐含准确率为95%,可用于眼癌的分析和检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation and Performance Analysis of Novel Support Vector Machine Classifier for Detecting Eye Cancer Image in comparison with Decision Tree
The focus of the research is to identify and detect eye cancer using novel Support Vector Machine (SVM) in contrast with Decision tree (DT). Materials and Methods: Samples are analyzed using two groups with 50 eye images. The SVM algorithm was considered as g1 and g2 as a decision tree algorithm for detection of cancerous cells in the eye image. Results: SVM has achieved a notable value of 95.0% when compared with a decision tree algorithm of 87.45% with significance (p<0.05). Conclusion: The SVM algorithm has better implication accuracy of 95% to the decision tree for the analysis and detection of eye cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Suicidal Ideation Detection on Social Media: A Machine Learning Approach Artificial Intelligence Techniques to Predict the Infectious Diseases: Open Challenges and Research Issues Brain Tumor Classification by Convolutional Neural Network FDR: An Automated System for Finding Missing People Autism Spectrum Disorder Detection using theDeep Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1