语音意义层:语音象似性的计算探索

Andrea Gregor de Varda, C. Strapparava
{"title":"语音意义层:语音象似性的计算探索","authors":"Andrea Gregor de Varda, C. Strapparava","doi":"10.4000/books.aaccademia.8443","DOIUrl":null,"url":null,"abstract":"The present paper aims to investigate the nature and the extent of cross-linguistic phonosemantic correspondences within a computational framework. An LSTMbased Recurrent Neural Network is trained to associate the phonetic representation of a word, encoded as a sequence of feature vectors, to its corresponding semantic representation in a multilingual vector space. The processing network is tested, without further training, in a language that does not appear in the training set. The performance of the multilingual model is compared with a monolingual upper bound and a randomized baseline. After the quantitative evaluation of its performance, a qualitative analysis is carried out on the network’s most effective predictions, showing an inhomogeneous distribution of phonosemantic information in the lexicon, influenced by semantic, syntactic, and pragmatic factors.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"7 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phonological Layers of Meaning: A Computational Exploration of Sound Iconicity\",\"authors\":\"Andrea Gregor de Varda, C. Strapparava\",\"doi\":\"10.4000/books.aaccademia.8443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper aims to investigate the nature and the extent of cross-linguistic phonosemantic correspondences within a computational framework. An LSTMbased Recurrent Neural Network is trained to associate the phonetic representation of a word, encoded as a sequence of feature vectors, to its corresponding semantic representation in a multilingual vector space. The processing network is tested, without further training, in a language that does not appear in the training set. The performance of the multilingual model is compared with a monolingual upper bound and a randomized baseline. After the quantitative evaluation of its performance, a qualitative analysis is carried out on the network’s most effective predictions, showing an inhomogeneous distribution of phonosemantic information in the lexicon, influenced by semantic, syntactic, and pragmatic factors.\",\"PeriodicalId\":300279,\"journal\":{\"name\":\"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020\",\"volume\":\"7 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/books.aaccademia.8443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.8443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是在计算框架内研究跨语言语音对应的性质和程度。基于lstm的递归神经网络被训练将一个词的语音表示(编码为一系列特征向量)与多语言向量空间中相应的语义表示相关联。处理网络在没有进一步训练的情况下,用一种没有出现在训练集中的语言进行测试。将多语言模型的性能与单语言上界和随机基线进行比较。在对其性能进行定量评估之后,对网络最有效的预测进行定性分析,显示出词汇中语音信息的不均匀分布,受语义、句法和语用因素的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phonological Layers of Meaning: A Computational Exploration of Sound Iconicity
The present paper aims to investigate the nature and the extent of cross-linguistic phonosemantic correspondences within a computational framework. An LSTMbased Recurrent Neural Network is trained to associate the phonetic representation of a word, encoded as a sequence of feature vectors, to its corresponding semantic representation in a multilingual vector space. The processing network is tested, without further training, in a language that does not appear in the training set. The performance of the multilingual model is compared with a monolingual upper bound and a randomized baseline. After the quantitative evaluation of its performance, a qualitative analysis is carried out on the network’s most effective predictions, showing an inhomogeneous distribution of phonosemantic information in the lexicon, influenced by semantic, syntactic, and pragmatic factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Case Study of Natural Gender Phenomena in Translation. A Comparison of Google Translate, Bing Microsoft Translator and DeepL for English to Italian, French and Spanish How Granularity of Orthography-Phonology Mappings Affect Reading Development: Evidence from a Computational Model of English Word Reading and Spelling Creativity Embedding: A Vector to Characterise and Classify Plausible Triples in Deep Learning NLP Models (Stem and Word) Predictability in Italian Verb Paradigms: An Entropy-Based Study Exploiting the New Resource LeFFI Dialog-based Help Desk through Automated Question Answering and Intent Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1