图时态编码的探索性用户研究

V. Filipov, Alessio Arleo, S. Miksch
{"title":"图时态编码的探索性用户研究","authors":"V. Filipov, Alessio Arleo, S. Miksch","doi":"10.1109/PacificVis52677.2021.00025","DOIUrl":null,"url":null,"abstract":"A temporal graph stores and reflects temporal information associated with its entities and relationships. Such graphs can be utilized to model a broad variety of problems in a multitude of domains. Re-searchers from different fields of expertise are increasingly applying graph visualization and analysis to explore unknown phenomena, complex emerging structures, and changes occurring over time in their data. While several empirical studies evaluate the benefits and drawbacks of different network representations, visualizing the temporal dimension in graphs still presents an open challenge. In this paper we propose an exploratory user study with the aim of evaluating different combinations of graph representations, namely node-link and adjacency matrix, and temporal encodings, such as superimposition, juxtaposition and animation, on typical temporal tasks. The study participants expressed positive feedback toward matrix representations, with generally quicker and more accurate responses than with the node-link representation.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"128 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploratory User Study on Graph Temporal Encodings\",\"authors\":\"V. Filipov, Alessio Arleo, S. Miksch\",\"doi\":\"10.1109/PacificVis52677.2021.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A temporal graph stores and reflects temporal information associated with its entities and relationships. Such graphs can be utilized to model a broad variety of problems in a multitude of domains. Re-searchers from different fields of expertise are increasingly applying graph visualization and analysis to explore unknown phenomena, complex emerging structures, and changes occurring over time in their data. While several empirical studies evaluate the benefits and drawbacks of different network representations, visualizing the temporal dimension in graphs still presents an open challenge. In this paper we propose an exploratory user study with the aim of evaluating different combinations of graph representations, namely node-link and adjacency matrix, and temporal encodings, such as superimposition, juxtaposition and animation, on typical temporal tasks. The study participants expressed positive feedback toward matrix representations, with generally quicker and more accurate responses than with the node-link representation.\",\"PeriodicalId\":199565,\"journal\":{\"name\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"volume\":\"128 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis52677.2021.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

时间图存储和反映与其实体和关系相关联的时间信息。这样的图可以用来为许多领域中的各种各样的问题建模。来自不同专业领域的研究人员越来越多地应用图形可视化和分析来探索未知现象,复杂的新兴结构以及数据中随时间发生的变化。虽然一些实证研究评估了不同网络表示的优点和缺点,但在图中可视化时间维度仍然是一个开放的挑战。在本文中,我们提出了一个探索性的用户研究,目的是评估图表示(即节点链接矩阵和邻接矩阵)和时间编码(如叠加、并置和动画)在典型时间任务上的不同组合。研究参与者对矩阵表示法表达了积极的反馈,通常比节点链接表示法更快、更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploratory User Study on Graph Temporal Encodings
A temporal graph stores and reflects temporal information associated with its entities and relationships. Such graphs can be utilized to model a broad variety of problems in a multitude of domains. Re-searchers from different fields of expertise are increasingly applying graph visualization and analysis to explore unknown phenomena, complex emerging structures, and changes occurring over time in their data. While several empirical studies evaluate the benefits and drawbacks of different network representations, visualizing the temporal dimension in graphs still presents an open challenge. In this paper we propose an exploratory user study with the aim of evaluating different combinations of graph representations, namely node-link and adjacency matrix, and temporal encodings, such as superimposition, juxtaposition and animation, on typical temporal tasks. The study participants expressed positive feedback toward matrix representations, with generally quicker and more accurate responses than with the node-link representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles Know-What and Know-Who: Document Searching and Exploration using Topic-Based Two-Mode Networks Louvain-based Multi-level Graph Drawing A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1