{"title":"关于太空任务的自主性要求","authors":"Emil Vassev, M. Hinchey","doi":"10.1109/ISORC.2013.6913242","DOIUrl":null,"url":null,"abstract":"In new space exploration initiatives of NASA and ESA, there is emphasis on both human and robotic exploration. Risk and feasibility are major factors supporting the use of unmanned craft and the use of automation and robotic technologies where possible. In that context, an autonomous system is able to monitor its behavior and eventually modify the same according to changes in the operational environment, thus being considered as self-adaption. Requirements engineering for autonomous systems, therefore, must address what adaptations are possible and under what constrains, and how those adaptations are realized. Requirements engineering for autonomous systems appears to be a wide open research area with only a limited number of approaches yet considered. In this paper, we present initial results of our research and study on autonomy requirements for space systems.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"On the autonomy requirements for space missions\",\"authors\":\"Emil Vassev, M. Hinchey\",\"doi\":\"10.1109/ISORC.2013.6913242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In new space exploration initiatives of NASA and ESA, there is emphasis on both human and robotic exploration. Risk and feasibility are major factors supporting the use of unmanned craft and the use of automation and robotic technologies where possible. In that context, an autonomous system is able to monitor its behavior and eventually modify the same according to changes in the operational environment, thus being considered as self-adaption. Requirements engineering for autonomous systems, therefore, must address what adaptations are possible and under what constrains, and how those adaptations are realized. Requirements engineering for autonomous systems appears to be a wide open research area with only a limited number of approaches yet considered. In this paper, we present initial results of our research and study on autonomy requirements for space systems.\",\"PeriodicalId\":330873,\"journal\":{\"name\":\"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC.2013.6913242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2013.6913242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In new space exploration initiatives of NASA and ESA, there is emphasis on both human and robotic exploration. Risk and feasibility are major factors supporting the use of unmanned craft and the use of automation and robotic technologies where possible. In that context, an autonomous system is able to monitor its behavior and eventually modify the same according to changes in the operational environment, thus being considered as self-adaption. Requirements engineering for autonomous systems, therefore, must address what adaptations are possible and under what constrains, and how those adaptations are realized. Requirements engineering for autonomous systems appears to be a wide open research area with only a limited number of approaches yet considered. In this paper, we present initial results of our research and study on autonomy requirements for space systems.