基于强跟踪卡尔曼滤波和改进径向基神经网络的GPS/INS组合导航

X. Tian, Chengdong Xu
{"title":"基于强跟踪卡尔曼滤波和改进径向基神经网络的GPS/INS组合导航","authors":"X. Tian, Chengdong Xu","doi":"10.1109/CCSSE.2016.7784356","DOIUrl":null,"url":null,"abstract":"Aiming to improve positioning precision of the GPS/INS integrated navigation system during GPS outages, a novel model combined with strong tracking Kalman filter (STKF) and improved Radial Basis Function Neural Network(IRBFNN) algorithms is proposed and tested. STKF is used to estimate INS errors as a replacement of Kalman filter (KF), and IRBFNN is trained based on STKF when GPS works well and applied to predict INS errors during GPS outages. In the IRBF neural network, the width of the hidden layer and kernel function are optimized by using genetic algorithm to obtain a high precision generalization ability of RBF network structure. The simulation indicate that the proposed model can effectively provide high accurate corrections to the standalone INS during GPS outages.","PeriodicalId":136809,"journal":{"name":"2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Novel hybrid of strong tracking Kalman filter and improved radial basis function neural network for GPS/INS integrated navagation\",\"authors\":\"X. Tian, Chengdong Xu\",\"doi\":\"10.1109/CCSSE.2016.7784356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming to improve positioning precision of the GPS/INS integrated navigation system during GPS outages, a novel model combined with strong tracking Kalman filter (STKF) and improved Radial Basis Function Neural Network(IRBFNN) algorithms is proposed and tested. STKF is used to estimate INS errors as a replacement of Kalman filter (KF), and IRBFNN is trained based on STKF when GPS works well and applied to predict INS errors during GPS outages. In the IRBF neural network, the width of the hidden layer and kernel function are optimized by using genetic algorithm to obtain a high precision generalization ability of RBF network structure. The simulation indicate that the proposed model can effectively provide high accurate corrections to the standalone INS during GPS outages.\",\"PeriodicalId\":136809,\"journal\":{\"name\":\"2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCSSE.2016.7784356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCSSE.2016.7784356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了提高GPS/INS组合导航系统在GPS中断时的定位精度,提出了一种结合强跟踪卡尔曼滤波(STKF)和改进径向基函数神经网络(IRBFNN)算法的新模型并进行了测试。利用STKF代替卡尔曼滤波(KF)估计惯导系统误差,在GPS工作良好时基于STKF训练IRBFNN,并将其应用于GPS中断时的惯导系统误差预测。在IRBF神经网络中,采用遗传算法对隐层宽度和核函数进行优化,获得了RBF网络结构的高精度泛化能力。仿真结果表明,该模型能有效地在GPS中断时对独立惯性导航系统进行高精度修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel hybrid of strong tracking Kalman filter and improved radial basis function neural network for GPS/INS integrated navagation
Aiming to improve positioning precision of the GPS/INS integrated navigation system during GPS outages, a novel model combined with strong tracking Kalman filter (STKF) and improved Radial Basis Function Neural Network(IRBFNN) algorithms is proposed and tested. STKF is used to estimate INS errors as a replacement of Kalman filter (KF), and IRBFNN is trained based on STKF when GPS works well and applied to predict INS errors during GPS outages. In the IRBF neural network, the width of the hidden layer and kernel function are optimized by using genetic algorithm to obtain a high precision generalization ability of RBF network structure. The simulation indicate that the proposed model can effectively provide high accurate corrections to the standalone INS during GPS outages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy logic controller design for intelligent air-conditioning system Design of multi-point wireless multifunction monitoring system based on Android Link weights-based ANT colony routing algorithm for wireless sensor networks Study on control method of activated sludge sewage treatment system Adaptive sliding mode control for a vehicle steer-by-wire system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1