E. Balaban, P. Bansal, P. Stoelting, A. Saxena, K. Goebel, S. Curran
{"title":"航空航天系统中机电作动器的诊断方法","authors":"E. Balaban, P. Bansal, P. Stoelting, A. Saxena, K. Goebel, S. Curran","doi":"10.1109/AERO.2009.4839661","DOIUrl":null,"url":null,"abstract":"Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.","PeriodicalId":117250,"journal":{"name":"2009 IEEE Aerospace conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":"{\"title\":\"A diagnostic approach for electro-mechanical actuators in aerospace systems\",\"authors\":\"E. Balaban, P. Bansal, P. Stoelting, A. Saxena, K. Goebel, S. Curran\",\"doi\":\"10.1109/AERO.2009.4839661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.\",\"PeriodicalId\":117250,\"journal\":{\"name\":\"2009 IEEE Aerospace conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"147\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Aerospace conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2009.4839661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Aerospace conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2009.4839661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A diagnostic approach for electro-mechanical actuators in aerospace systems
Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.