估计融合与数据驱动通信

Xiaolei Bian, X. Li
{"title":"估计融合与数据驱动通信","authors":"Xiaolei Bian, X. Li","doi":"10.23919/ICIF.2017.8009818","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of estimating the state of a discrete-time stochastic linear system based on data collected from multiple sensors with limited communication resources. For the cases of transmitting measurements and local state estimates, respectively, we design data-driven communication schemes based on a normalized innovation vector and corresponding fusion rules in the (approximate) minimum mean square error (MMSE) sense. These communication schemes can achieve a trade-off between communication costs and estimation performance. These fusion rules can allow the estimator to improve its estimate based on the fact that no transmission of data indicates a small innovation. A simulation example is provided to confirm the effectiveness of the proposed strategies.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"313 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimation fusion with data-driven communication\",\"authors\":\"Xiaolei Bian, X. Li\",\"doi\":\"10.23919/ICIF.2017.8009818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of estimating the state of a discrete-time stochastic linear system based on data collected from multiple sensors with limited communication resources. For the cases of transmitting measurements and local state estimates, respectively, we design data-driven communication schemes based on a normalized innovation vector and corresponding fusion rules in the (approximate) minimum mean square error (MMSE) sense. These communication schemes can achieve a trade-off between communication costs and estimation performance. These fusion rules can allow the estimator to improve its estimate based on the fact that no transmission of data indicates a small innovation. A simulation example is provided to confirm the effectiveness of the proposed strategies.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"313 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了在通信资源有限的情况下,基于多个传感器采集的数据估计离散随机线性系统状态的问题。对于传输测量和局部状态估计,我们分别设计了基于归一化创新向量和相应的(近似)最小均方误差(MMSE)意义上的融合规则的数据驱动通信方案。这些通信方案可以在通信成本和估计性能之间实现折衷。这些融合规则可以使估计器基于没有数据传输表明一个小的创新这一事实来改进其估计。仿真实例验证了所提策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation fusion with data-driven communication
This paper deals with the problem of estimating the state of a discrete-time stochastic linear system based on data collected from multiple sensors with limited communication resources. For the cases of transmitting measurements and local state estimates, respectively, we design data-driven communication schemes based on a normalized innovation vector and corresponding fusion rules in the (approximate) minimum mean square error (MMSE) sense. These communication schemes can achieve a trade-off between communication costs and estimation performance. These fusion rules can allow the estimator to improve its estimate based on the fact that no transmission of data indicates a small innovation. A simulation example is provided to confirm the effectiveness of the proposed strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1