具有大视角失真的步态识别性能分析

Fatimah Abdulsattar, J. Carter
{"title":"具有大视角失真的步态识别性能分析","authors":"Fatimah Abdulsattar, J. Carter","doi":"10.1109/ISBA.2016.7477229","DOIUrl":null,"url":null,"abstract":"In real security scenarios, gait data may be highly distorted due to perspective effects and there may be significant change in appearance, orientation and occlusion between different measurements. To deal with this problem, a new identification technique is proposed by reconstructing 3D models of the walking subject, which are then used to identify subject images from an arbitrary camera. 3D models in one gait cycle are aligned to match silhouettes in a 2D gait cycle by estimating the positions of a 3D and 2D gait cycles in a 3D space. This allows the gait data in a gallery and probe share the same appearance, perspective and occlusion. Generic Fourier Descriptors are used as gait features. The performance is evaluated using a new collected dataset of 17 subjects walking in a narrow walkway. A Correct Classification Rate of 98.8% is achieved. This high recognition rate has still been achieved using a modest number of features. The analysis indicate that the technique can handle truncated gait cycles of different length and is insensitive to noisy silhouettes. However, calibration errors have a negative impact upon recognition performance.","PeriodicalId":198009,"journal":{"name":"2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Performance analysis of gait recognition with large perspective distortion\",\"authors\":\"Fatimah Abdulsattar, J. Carter\",\"doi\":\"10.1109/ISBA.2016.7477229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In real security scenarios, gait data may be highly distorted due to perspective effects and there may be significant change in appearance, orientation and occlusion between different measurements. To deal with this problem, a new identification technique is proposed by reconstructing 3D models of the walking subject, which are then used to identify subject images from an arbitrary camera. 3D models in one gait cycle are aligned to match silhouettes in a 2D gait cycle by estimating the positions of a 3D and 2D gait cycles in a 3D space. This allows the gait data in a gallery and probe share the same appearance, perspective and occlusion. Generic Fourier Descriptors are used as gait features. The performance is evaluated using a new collected dataset of 17 subjects walking in a narrow walkway. A Correct Classification Rate of 98.8% is achieved. This high recognition rate has still been achieved using a modest number of features. The analysis indicate that the technique can handle truncated gait cycles of different length and is insensitive to noisy silhouettes. However, calibration errors have a negative impact upon recognition performance.\",\"PeriodicalId\":198009,\"journal\":{\"name\":\"2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2016.7477229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2016.7477229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在真实的安全场景中,由于视角效应的影响,步态数据可能会高度扭曲,不同测量值之间的外观、方向和遮挡可能会发生显著变化。为了解决这一问题,提出了一种新的识别技术,通过重建行走主体的三维模型,然后将其用于识别来自任意相机的主体图像。通过估计三维和二维步态周期在三维空间中的位置,对一个步态周期中的三维模型进行对齐,以匹配二维步态周期中的轮廓。这使得画廊和探头中的步态数据共享相同的外观,视角和遮挡。采用通用傅里叶描述子作为步态特征。使用新收集的17个受试者在狭窄的人行道上行走的数据集来评估性能。分类正确率达到98.8%。这种高识别率仍然是通过使用少量的特征来实现的。分析表明,该方法可以处理不同长度的截断步态周期,并且对噪声轮廓不敏感。然而,标定误差对识别性能有负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance analysis of gait recognition with large perspective distortion
In real security scenarios, gait data may be highly distorted due to perspective effects and there may be significant change in appearance, orientation and occlusion between different measurements. To deal with this problem, a new identification technique is proposed by reconstructing 3D models of the walking subject, which are then used to identify subject images from an arbitrary camera. 3D models in one gait cycle are aligned to match silhouettes in a 2D gait cycle by estimating the positions of a 3D and 2D gait cycles in a 3D space. This allows the gait data in a gallery and probe share the same appearance, perspective and occlusion. Generic Fourier Descriptors are used as gait features. The performance is evaluated using a new collected dataset of 17 subjects walking in a narrow walkway. A Correct Classification Rate of 98.8% is achieved. This high recognition rate has still been achieved using a modest number of features. The analysis indicate that the technique can handle truncated gait cycles of different length and is insensitive to noisy silhouettes. However, calibration errors have a negative impact upon recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"I don't like putting my face on the Internet!": An acceptance study of face biometrics as a CAPTCHA replacement Performance analysis of gait recognition with large perspective distortion Face alignment via an ensemble of random ferns Iris recognition with a database of iris images obtained in visible light using smartphone camera Rendering or normalization? An analysis of the 3D-aided pose-invariant face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1