{"title":"云环境下大数据的动态迁移方法","authors":"Ding Jiaman, Wang Sichen, Du Yi, Jia Lianyin","doi":"10.1109/PDCAT.2016.034","DOIUrl":null,"url":null,"abstract":"Big data applications store data sets through sharing data center under the Cloud computing environment, but the need of data set in big data applications is dynamic change over time. In face of multiple data centers, such applications meet new challenges in data migration which mainly include how to how to reduce the number of network access, how to reduce the overall time consumption, and how to improve the efficiency by the time of balancing the global load in the migration process. Facing these challenges, we first build the problem model and descript the dynamic migration method, then solve the global time consumption of data migration, the number of network access and global load balancing these three parameters. Finally, do the cloud computing simulation experiment under the Cloudsim experiment platform. The result shows that the proposed method makes the task completion time reduced by 10% and the data transmission time accounts for the roportion of the total time is reduced. When the amount of data sets is increase, the proportion can reduces to 50% or less. Network access number lower than Zipf and reached stable, in global load, the variance of the node's store space closed to zero.","PeriodicalId":203925,"journal":{"name":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Dynamic Migration Method for Big Data in Cloud\",\"authors\":\"Ding Jiaman, Wang Sichen, Du Yi, Jia Lianyin\",\"doi\":\"10.1109/PDCAT.2016.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data applications store data sets through sharing data center under the Cloud computing environment, but the need of data set in big data applications is dynamic change over time. In face of multiple data centers, such applications meet new challenges in data migration which mainly include how to how to reduce the number of network access, how to reduce the overall time consumption, and how to improve the efficiency by the time of balancing the global load in the migration process. Facing these challenges, we first build the problem model and descript the dynamic migration method, then solve the global time consumption of data migration, the number of network access and global load balancing these three parameters. Finally, do the cloud computing simulation experiment under the Cloudsim experiment platform. The result shows that the proposed method makes the task completion time reduced by 10% and the data transmission time accounts for the roportion of the total time is reduced. When the amount of data sets is increase, the proportion can reduces to 50% or less. Network access number lower than Zipf and reached stable, in global load, the variance of the node's store space closed to zero.\",\"PeriodicalId\":203925,\"journal\":{\"name\":\"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2016.034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2016.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Big data applications store data sets through sharing data center under the Cloud computing environment, but the need of data set in big data applications is dynamic change over time. In face of multiple data centers, such applications meet new challenges in data migration which mainly include how to how to reduce the number of network access, how to reduce the overall time consumption, and how to improve the efficiency by the time of balancing the global load in the migration process. Facing these challenges, we first build the problem model and descript the dynamic migration method, then solve the global time consumption of data migration, the number of network access and global load balancing these three parameters. Finally, do the cloud computing simulation experiment under the Cloudsim experiment platform. The result shows that the proposed method makes the task completion time reduced by 10% and the data transmission time accounts for the roportion of the total time is reduced. When the amount of data sets is increase, the proportion can reduces to 50% or less. Network access number lower than Zipf and reached stable, in global load, the variance of the node's store space closed to zero.