基于李流形二阶优化的投影跟踪

Guangwei Li, Yunpeng Liu, Jian Yin, Zelin Shi
{"title":"基于李流形二阶优化的投影跟踪","authors":"Guangwei Li, Yunpeng Liu, Jian Yin, Zelin Shi","doi":"10.1109/CCPR.2008.46","DOIUrl":null,"url":null,"abstract":"Template tracking based on the space transformation model can usually be reduced to solve a nonlinear least squares optimization problem over a Lie manifold of parameters. The algorithm on the vector space has more limitations when it concerns the nonlinear projective warps. Exploiting the special structure of Lie manifolds allows one to devise a method for optimizing on Lie manifolds in a computationally efficient manner. The mapping between a Lie group and its Lie algebra can make us to utilize the specific properties of the target tracking to propose a second-order minimization tracking method. This approach needs not calculating the Hessian matrix and reduces the computation complexity. The comparative experiments with the algorithm based on the vector space and the Gauss-Newton algorithm based on the Lie algebra parameterization validate the feasibility and high effectiveness of our method.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projective Tracking Based on Second-Order Optimization on Lie Manifolds\",\"authors\":\"Guangwei Li, Yunpeng Liu, Jian Yin, Zelin Shi\",\"doi\":\"10.1109/CCPR.2008.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Template tracking based on the space transformation model can usually be reduced to solve a nonlinear least squares optimization problem over a Lie manifold of parameters. The algorithm on the vector space has more limitations when it concerns the nonlinear projective warps. Exploiting the special structure of Lie manifolds allows one to devise a method for optimizing on Lie manifolds in a computationally efficient manner. The mapping between a Lie group and its Lie algebra can make us to utilize the specific properties of the target tracking to propose a second-order minimization tracking method. This approach needs not calculating the Hessian matrix and reduces the computation complexity. The comparative experiments with the algorithm based on the vector space and the Gauss-Newton algorithm based on the Lie algebra parameterization validate the feasibility and high effectiveness of our method.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于空间变换模型的模板跟踪通常可以简化为求解参数李流形上的非线性最小二乘优化问题。向量空间上的算法在处理非线性投影翘曲时存在较大的局限性。利用李流形的特殊结构,可以设计出一种计算效率高的方法来优化李流形。李群与其李代数之间的映射关系使我们能够利用目标跟踪的特殊性质提出一种二阶最小化跟踪方法。该方法不需要计算Hessian矩阵,降低了计算复杂度。通过与基于向量空间的算法和基于李代数参数化的高斯-牛顿算法的对比实验,验证了该方法的可行性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Projective Tracking Based on Second-Order Optimization on Lie Manifolds
Template tracking based on the space transformation model can usually be reduced to solve a nonlinear least squares optimization problem over a Lie manifold of parameters. The algorithm on the vector space has more limitations when it concerns the nonlinear projective warps. Exploiting the special structure of Lie manifolds allows one to devise a method for optimizing on Lie manifolds in a computationally efficient manner. The mapping between a Lie group and its Lie algebra can make us to utilize the specific properties of the target tracking to propose a second-order minimization tracking method. This approach needs not calculating the Hessian matrix and reduces the computation complexity. The comparative experiments with the algorithm based on the vector space and the Gauss-Newton algorithm based on the Lie algebra parameterization validate the feasibility and high effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Gait Recognition Method Based on Standard Deviation Energy Image A New Method for Facial Beauty Assessment Content-Based Semantic Indexing of Image using Fuzzy Support Vector Machines Stochastic Segment Model Decoding Algorithm Based on Neighboring Segments and its Application in LVCSR Study on Highlights Detection in Soccer Video Based on the Location of Slow Motion Replay and Goal Net Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1