煅烧法生产生石灰对奥格洛库塔石灰石的处理

Benson Chinweuba Udeh
{"title":"煅烧法生产生石灰对奥格洛库塔石灰石的处理","authors":"Benson Chinweuba Udeh","doi":"10.53294/ijfetr.2021.1.2.0062","DOIUrl":null,"url":null,"abstract":"Report on processing of Ogbolokuta limestone through calcination technique for quicklime production is presented. The limestone was washed to remove impurities, dried, ground in to powder form and classified with the aid of the automatic vibrating sieves of 80mm, 90mm, 100mm, 300mm and 425mm. X-ray fluorescence spectroscopy was used to determine the chemical compositions of the limestone, while its mineralogical composition was determined by X-ray diffractometer. Scanning electron microscope was used to study the surface morphology of the sample. Sample size area was grossly estimated by Langmuir method, while density functional theory was used to obtain different pore structural morphology of the sample. Analyses of the results showed that CaO (65.7%) is the predominant chemical constituent, and calcite is the main mineral of the limestone. Quicklime was successfully produced from Ogbolokuta limestone through calcination process. Calcination of the limestone enhanced its surface morphology. The quicklime yield was temperature, particle size and time dependent.","PeriodicalId":231442,"journal":{"name":"International Journal of Frontiers in Engineering and Technology Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Processing of Ogbolokuta limestone through calcination technique for quicklime production\",\"authors\":\"Benson Chinweuba Udeh\",\"doi\":\"10.53294/ijfetr.2021.1.2.0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Report on processing of Ogbolokuta limestone through calcination technique for quicklime production is presented. The limestone was washed to remove impurities, dried, ground in to powder form and classified with the aid of the automatic vibrating sieves of 80mm, 90mm, 100mm, 300mm and 425mm. X-ray fluorescence spectroscopy was used to determine the chemical compositions of the limestone, while its mineralogical composition was determined by X-ray diffractometer. Scanning electron microscope was used to study the surface morphology of the sample. Sample size area was grossly estimated by Langmuir method, while density functional theory was used to obtain different pore structural morphology of the sample. Analyses of the results showed that CaO (65.7%) is the predominant chemical constituent, and calcite is the main mineral of the limestone. Quicklime was successfully produced from Ogbolokuta limestone through calcination process. Calcination of the limestone enhanced its surface morphology. The quicklime yield was temperature, particle size and time dependent.\",\"PeriodicalId\":231442,\"journal\":{\"name\":\"International Journal of Frontiers in Engineering and Technology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Frontiers in Engineering and Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53294/ijfetr.2021.1.2.0062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Frontiers in Engineering and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53294/ijfetr.2021.1.2.0062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了利用煅烧技术加工Ogbolokuta石灰石生产生石灰的情况。石灰石经水洗除杂、干燥、磨成粉状后,借助80mm、90mm、100mm、300mm、425mm的自动振动筛进行分级。用x射线荧光光谱法测定石灰石的化学成分,用x射线衍射仪测定其矿物学成分。利用扫描电子显微镜对样品的表面形貌进行了研究。采用Langmuir法粗略估算样品尺寸面积,利用密度泛函理论得到样品的不同孔隙结构形态。分析结果表明,CaO(65.7%)为主要化学成分,方解石为主要矿物。以Ogbolokuta石灰石为原料,采用煅烧法成功生产生石灰。石灰石的煅烧使其表面形貌增强。生石灰得率受温度、粒度和时间的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Processing of Ogbolokuta limestone through calcination technique for quicklime production
Report on processing of Ogbolokuta limestone through calcination technique for quicklime production is presented. The limestone was washed to remove impurities, dried, ground in to powder form and classified with the aid of the automatic vibrating sieves of 80mm, 90mm, 100mm, 300mm and 425mm. X-ray fluorescence spectroscopy was used to determine the chemical compositions of the limestone, while its mineralogical composition was determined by X-ray diffractometer. Scanning electron microscope was used to study the surface morphology of the sample. Sample size area was grossly estimated by Langmuir method, while density functional theory was used to obtain different pore structural morphology of the sample. Analyses of the results showed that CaO (65.7%) is the predominant chemical constituent, and calcite is the main mineral of the limestone. Quicklime was successfully produced from Ogbolokuta limestone through calcination process. Calcination of the limestone enhanced its surface morphology. The quicklime yield was temperature, particle size and time dependent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical perspectives on predictive analytics in it service management: Enhancing service quality Predictive maintenance in oil and gas facilities, leveraging ai for asset integrity management WR21 marine gas turbine thermodynamic simulator for ship propulsion studies A Proposal for method of cold nuclear fusion, based on new Axioms and Laws Economic and environmental comparison between diesel-electric and mechanical propulsion plants for a small cruise ship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1