TKR假体置入计算膝关节模型的实验验证

Aaron Henry, G. Goodchild, Jonathan B Greenwald, M. Meftah, Michael Moreno, Andrew B. Robbins
{"title":"TKR假体置入计算膝关节模型的实验验证","authors":"Aaron Henry, G. Goodchild, Jonathan B Greenwald, M. Meftah, Michael Moreno, Andrew B. Robbins","doi":"10.1115/dmd2023-5598","DOIUrl":null,"url":null,"abstract":"\n The goal of this work was to experimentally validate a computational model for TKRs to improve implant alignment accuracy and assess potential implant misalignment during preoperative planning. Initial validation of the model was achieved by comparing ligament strain energies between the computational model and a physical knee model comprised of bone and ligament analogues. Experimental validation would be considered met when the computational model strain energies were within 10% of the measured values for all six physical knees. Physical and computational knee models were created with six variations of implant alignment to test the robustness of the computational model. Strain energy errors were well within the 10% threshold across knee range of motion.","PeriodicalId":325836,"journal":{"name":"2023 Design of Medical Devices Conference","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPERIMENTAL VALIDATION OF A COMPUTATIONAL KNEE MODEL OF TKR IMPLANT PLACEMENT\",\"authors\":\"Aaron Henry, G. Goodchild, Jonathan B Greenwald, M. Meftah, Michael Moreno, Andrew B. Robbins\",\"doi\":\"10.1115/dmd2023-5598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The goal of this work was to experimentally validate a computational model for TKRs to improve implant alignment accuracy and assess potential implant misalignment during preoperative planning. Initial validation of the model was achieved by comparing ligament strain energies between the computational model and a physical knee model comprised of bone and ligament analogues. Experimental validation would be considered met when the computational model strain energies were within 10% of the measured values for all six physical knees. Physical and computational knee models were created with six variations of implant alignment to test the robustness of the computational model. Strain energy errors were well within the 10% threshold across knee range of motion.\",\"PeriodicalId\":325836,\"journal\":{\"name\":\"2023 Design of Medical Devices Conference\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Design of Medical Devices Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dmd2023-5598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design of Medical Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dmd2023-5598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是通过实验验证tkr的计算模型,以提高种植体对准精度,并在术前计划中评估潜在的种植体错位。通过比较计算模型和由骨和韧带类似物组成的物理膝关节模型之间的韧带应变能,实现了模型的初步验证。当计算模型应变能在所有六个物理膝关节的实测值的10%以内时,认为满足实验验证。用六种不同的假体对齐方式创建物理和计算膝关节模型,以测试计算模型的稳健性。应变能误差在整个膝关节运动范围内的10%阈值内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EXPERIMENTAL VALIDATION OF A COMPUTATIONAL KNEE MODEL OF TKR IMPLANT PLACEMENT
The goal of this work was to experimentally validate a computational model for TKRs to improve implant alignment accuracy and assess potential implant misalignment during preoperative planning. Initial validation of the model was achieved by comparing ligament strain energies between the computational model and a physical knee model comprised of bone and ligament analogues. Experimental validation would be considered met when the computational model strain energies were within 10% of the measured values for all six physical knees. Physical and computational knee models were created with six variations of implant alignment to test the robustness of the computational model. Strain energy errors were well within the 10% threshold across knee range of motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UMBRELAA: DESIGN OF A VARIABLE-SIZED LEFT ATRIAL APPENDAGE OCCLUSION DEVICE FOR STROKE PREVENTION VESTIBULAR IMPLANT STIMULATION PAUSE DETECTION THRESHOLDS: IMPLICATIONS FOR DESIGN OF BATTERY DEPLETION ALERTS ARTICULATED SURGICAL STAPLER WITH IMPROVED RANGE OF MOTION FOR MINIMALLY INVASIVE COLORECTAL SURGERY ROBOTIC ORTHOSIS BASED ON BEND SENSORS FOR OCCUPATIONAL MUSCULOSKELETAL DISORDER PREVENTION ON THE DESIGN OF ULTRA-WIDE BAND ANTIPODAL VIVALDI ANTENNA FOR BIOMEDICAL SENSORS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1