{"title":"基于熵的形状描述方法","authors":"V. Bruni, L. D. Cioppa, D. Vitulano","doi":"10.23919/EUSIPCO.2018.8553507","DOIUrl":null,"url":null,"abstract":"In this paper an automatic method for the selection of those Fourier descriptors which better correlate a 2D shape contour is presented. To this aim, shape description has been modeled as a non linear approximation problem and a strict relationship between transform entropy and the sorted version of the transformed analysed boundary is derived. As a result, Fourier descriptors are selected in a hierarchical way and the minimum number of coefficients able to give a nearly optimal shape boundary representation is automatically derived. The latter maximizes an entropic interpretation of a complexity-based similarity measure, i.e. the normalized information distance. Preliminary experimental results show that the proposed method is able to provide a compact and computationally effective description of shape boundary which guarantees a nearly optimal matching with the original one.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An entropy-based approach for shape description\",\"authors\":\"V. Bruni, L. D. Cioppa, D. Vitulano\",\"doi\":\"10.23919/EUSIPCO.2018.8553507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an automatic method for the selection of those Fourier descriptors which better correlate a 2D shape contour is presented. To this aim, shape description has been modeled as a non linear approximation problem and a strict relationship between transform entropy and the sorted version of the transformed analysed boundary is derived. As a result, Fourier descriptors are selected in a hierarchical way and the minimum number of coefficients able to give a nearly optimal shape boundary representation is automatically derived. The latter maximizes an entropic interpretation of a complexity-based similarity measure, i.e. the normalized information distance. Preliminary experimental results show that the proposed method is able to provide a compact and computationally effective description of shape boundary which guarantees a nearly optimal matching with the original one.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper an automatic method for the selection of those Fourier descriptors which better correlate a 2D shape contour is presented. To this aim, shape description has been modeled as a non linear approximation problem and a strict relationship between transform entropy and the sorted version of the transformed analysed boundary is derived. As a result, Fourier descriptors are selected in a hierarchical way and the minimum number of coefficients able to give a nearly optimal shape boundary representation is automatically derived. The latter maximizes an entropic interpretation of a complexity-based similarity measure, i.e. the normalized information distance. Preliminary experimental results show that the proposed method is able to provide a compact and computationally effective description of shape boundary which guarantees a nearly optimal matching with the original one.