心率偏转点的计算机辅助识别方法

Shenglan Wang, Junhui Li, Mingying Lan, Li Gao, Xiaolin Gao
{"title":"心率偏转点的计算机辅助识别方法","authors":"Shenglan Wang, Junhui Li, Mingying Lan, Li Gao, Xiaolin Gao","doi":"10.1109/PIC53636.2021.9687083","DOIUrl":null,"url":null,"abstract":"Lactate threshold or gas exchange threshold is commonly used to guide exercise intensity, but direct measurement of these two are never easy for general population. Among all physiological indicators, heart rate is very easy to obtain. And the heart rate deflection point is consistent with the lactate threshold during incremental exercise. However, previous studies suffer from expertise or a priori information requirement, computation inefficiency, lack of cohort diversity, etc. Based on prior knowledge, this contribution proposes a computer-aided methods to automatically identity heart rate intersection points by sections, and further optimization. As result, among 200 healthy college student volunteers, only 8 subjects fall beyond the 95% confidence interval in residual analysis. Therefore, a self-consistent, economic, noninvasive method to estimate the lactate threshold with heart rate data only is demonstrated.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computer-Aided Recognition Method of Heart Rate Deflection Point\",\"authors\":\"Shenglan Wang, Junhui Li, Mingying Lan, Li Gao, Xiaolin Gao\",\"doi\":\"10.1109/PIC53636.2021.9687083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lactate threshold or gas exchange threshold is commonly used to guide exercise intensity, but direct measurement of these two are never easy for general population. Among all physiological indicators, heart rate is very easy to obtain. And the heart rate deflection point is consistent with the lactate threshold during incremental exercise. However, previous studies suffer from expertise or a priori information requirement, computation inefficiency, lack of cohort diversity, etc. Based on prior knowledge, this contribution proposes a computer-aided methods to automatically identity heart rate intersection points by sections, and further optimization. As result, among 200 healthy college student volunteers, only 8 subjects fall beyond the 95% confidence interval in residual analysis. Therefore, a self-consistent, economic, noninvasive method to estimate the lactate threshold with heart rate data only is demonstrated.\",\"PeriodicalId\":297239,\"journal\":{\"name\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC53636.2021.9687083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳酸阈值或气体交换阈值通常用于指导运动强度,但对一般人群来说,直接测量这两者并不容易。在所有的生理指标中,心率是很容易得到的。心率偏转点与增量运动时乳酸阈值一致。然而,以往的研究存在专业知识或先验信息需求、计算效率低、缺乏队列多样性等问题。在先验知识的基础上,提出了一种分段自动识别心率交点的计算机辅助方法,并进行了进一步优化。因此,在200名健康大学生志愿者中,残差分析中只有8名受试者超过95%置信区间。因此,一个自我一致的,经济的,无创的方法来估计乳酸阈值仅与心率数据被证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Computer-Aided Recognition Method of Heart Rate Deflection Point
Lactate threshold or gas exchange threshold is commonly used to guide exercise intensity, but direct measurement of these two are never easy for general population. Among all physiological indicators, heart rate is very easy to obtain. And the heart rate deflection point is consistent with the lactate threshold during incremental exercise. However, previous studies suffer from expertise or a priori information requirement, computation inefficiency, lack of cohort diversity, etc. Based on prior knowledge, this contribution proposes a computer-aided methods to automatically identity heart rate intersection points by sections, and further optimization. As result, among 200 healthy college student volunteers, only 8 subjects fall beyond the 95% confidence interval in residual analysis. Therefore, a self-consistent, economic, noninvasive method to estimate the lactate threshold with heart rate data only is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Construction of Learning Diagnosis and Resources Recommendation System Based on Knowledge Graph Classification of Masonry Bricks Using Convolutional Neural Networks – a Case Study in a University-Industry Collaboration Project Optimal Scale Combinations Selection for Incomplete Generalized Multi-scale Decision Systems Application of Improved YOLOV4 in Intelligent Driving Scenarios Research on Hierarchical Clustering Undersampling and Random Forest Fusion Classification Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1