W-net:胸腔计算机断层扫描中危险器官自动分割的网络结构

Wenhui Zhao, Haibin Chen, Yao Lu
{"title":"W-net:胸腔计算机断层扫描中危险器官自动分割的网络结构","authors":"Wenhui Zhao, Haibin Chen, Yao Lu","doi":"10.1145/3399637.3399642","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of Organs at Risk (OAR) on Computed Tomography (CT) images is a crucial step in radiotherapy treatment planning. In this paper, we propose a novel W-Net structure combining a U-Net segmentation network and an adversarial network (GAN) to reconstruct the OAR. With the reconstruction loss, W-Net can better learn effective features and get more accuracy segmentation result than U-Net. We test our method in the SegTHOR challenge which focus on 4 thoracic OAR: esophagus, heart, trachea and aorta. The average Dice Similarity Coefficient (%) of W-Net and U-Net on these 4 OAR are 80.6 versus 79.6, 93.8 versus 93.4, 88.3 versus 88.1, and 91.5 versus 90.6. The Hausdorff Distance (HD) are 0.5905 versus 0.6923, 0.2055 versus 0.2215, 0.7162 versus 0.7374, and 0.8061 versus 0.9290.","PeriodicalId":248664,"journal":{"name":"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"W-net: A Network Structure for Automatic Segmentation of Organs at Risk in Thorax Computed Tomography\",\"authors\":\"Wenhui Zhao, Haibin Chen, Yao Lu\",\"doi\":\"10.1145/3399637.3399642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of Organs at Risk (OAR) on Computed Tomography (CT) images is a crucial step in radiotherapy treatment planning. In this paper, we propose a novel W-Net structure combining a U-Net segmentation network and an adversarial network (GAN) to reconstruct the OAR. With the reconstruction loss, W-Net can better learn effective features and get more accuracy segmentation result than U-Net. We test our method in the SegTHOR challenge which focus on 4 thoracic OAR: esophagus, heart, trachea and aorta. The average Dice Similarity Coefficient (%) of W-Net and U-Net on these 4 OAR are 80.6 versus 79.6, 93.8 versus 93.4, 88.3 versus 88.1, and 91.5 versus 90.6. The Hausdorff Distance (HD) are 0.5905 versus 0.6923, 0.2055 versus 0.2215, 0.7162 versus 0.7374, and 0.8061 versus 0.9290.\",\"PeriodicalId\":248664,\"journal\":{\"name\":\"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3399637.3399642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399637.3399642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

计算机断层扫描(CT)图像中危险器官(OAR)的准确分割是制定放射治疗计划的关键步骤。在本文中,我们提出了一种新的W-Net结构,结合U-Net分割网络和对抗网络(GAN)来重建桨叶。利用重构损失,W-Net可以更好地学习有效特征,得到比U-Net更准确的分割结果。我们在SegTHOR挑战中测试了我们的方法,该挑战主要针对4个胸部桨:食道、心脏、气管和主动脉。W-Net和U-Net在这4个桨上的平均骰子相似系数(%)分别为80.6比79.6、93.8比93.4、88.3比88.1、91.5比90.6。豪斯多夫距离(HD)分别为0.5905 vs 0.6923, 0.2055 vs 0.2215, 0.7162 vs 0.7374, 0.8061 vs 0.9290。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
W-net: A Network Structure for Automatic Segmentation of Organs at Risk in Thorax Computed Tomography
Accurate segmentation of Organs at Risk (OAR) on Computed Tomography (CT) images is a crucial step in radiotherapy treatment planning. In this paper, we propose a novel W-Net structure combining a U-Net segmentation network and an adversarial network (GAN) to reconstruct the OAR. With the reconstruction loss, W-Net can better learn effective features and get more accuracy segmentation result than U-Net. We test our method in the SegTHOR challenge which focus on 4 thoracic OAR: esophagus, heart, trachea and aorta. The average Dice Similarity Coefficient (%) of W-Net and U-Net on these 4 OAR are 80.6 versus 79.6, 93.8 versus 93.4, 88.3 versus 88.1, and 91.5 versus 90.6. The Hausdorff Distance (HD) are 0.5905 versus 0.6923, 0.2055 versus 0.2215, 0.7162 versus 0.7374, and 0.8061 versus 0.9290.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Monitoring of Intestinal Ischemia-reperfusion Injury in Rats by Photoacoustic Tomography Automatic Classification of Plasmodium for Malaria Diagnosis based on Ensemble Neural Network A Framework of Student's-t Mixture Model for Accurate and Robust Point Set Registration In vivo Monitoring Hemodynamic Changes in Finger Vessels Using Photoacoustic Tomography Mammographic Mass Retrieval Using Multi-view Information and Laplacian Score Feature Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1