通过设计脉冲神经元模型对不同神经元行为进行分类

A. Kumar, S. Kansal, M. Hanmandlu
{"title":"通过设计脉冲神经元模型对不同神经元行为进行分类","authors":"A. Kumar, S. Kansal, M. Hanmandlu","doi":"10.1109/ICE-CCN.2013.6528592","DOIUrl":null,"url":null,"abstract":"We have presented a simple two equation model which produces the rich behavior of biological neurons, including tonic spiking, tonic bursting, mixed mode firing, spike frequency adaptation, resonator, integrator etc. Our model is capable of producing 19 different kinds of dynamics of real biological neuron. We have illustrated the richness and complexity of spiking behavior of individual neuron in response to simple pulses of dc current.","PeriodicalId":286830,"journal":{"name":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of different neuron behavior by designing spiking neuron model\",\"authors\":\"A. Kumar, S. Kansal, M. Hanmandlu\",\"doi\":\"10.1109/ICE-CCN.2013.6528592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have presented a simple two equation model which produces the rich behavior of biological neurons, including tonic spiking, tonic bursting, mixed mode firing, spike frequency adaptation, resonator, integrator etc. Our model is capable of producing 19 different kinds of dynamics of real biological neuron. We have illustrated the richness and complexity of spiking behavior of individual neuron in response to simple pulses of dc current.\",\"PeriodicalId\":286830,\"journal\":{\"name\":\"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICE-CCN.2013.6528592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICE-CCN.2013.6528592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一个简单的双方程模型,该模型产生了生物神经元的丰富行为,包括强直脉冲、强直脉冲、混合模式放电、强直脉冲频率自适应、谐振器、积分器等。我们的模型能够产生真实生物神经元的19种不同的动态。我们已经说明了单个神经元响应简单直流电脉冲时的尖峰行为的丰富性和复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of different neuron behavior by designing spiking neuron model
We have presented a simple two equation model which produces the rich behavior of biological neurons, including tonic spiking, tonic bursting, mixed mode firing, spike frequency adaptation, resonator, integrator etc. Our model is capable of producing 19 different kinds of dynamics of real biological neuron. We have illustrated the richness and complexity of spiking behavior of individual neuron in response to simple pulses of dc current.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Removing snow from an image via image decomposition Maximum a posteriori adaptation method for video semantic indexing Low power 8×8 Sum of Absolute Difference engine for Motion Estimation in video compression A modified preamble structure based carrier frequency offset (CFO) and phase noise compensation in an OFDM system Multiple learning based classifiers using layered approach and Feature Selection for attack detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1