一种多核处理器任务调度算法

Xuanxia Yao, P. Geng, Xiaojiang Du
{"title":"一种多核处理器任务调度算法","authors":"Xuanxia Yao, P. Geng, Xiaojiang Du","doi":"10.1109/PDCAT.2013.47","DOIUrl":null,"url":null,"abstract":"With the widespread use of multi-core processors, task scheduling for multi-core processors has become a hot issue. Many researches have been done on task scheduling from various perspectives. However, the existing task scheduling algorithms still have some drawbacks, such as low processor utilization rate, high complexity, and so on. This paper presents a task scheduling algorithm for multi-core processors, which is based on priority queue and task duplication. In the proposed algorithm, the Directed A cyclic Graph (DAG) is used to build a task model. Based on the model, task critical degree, task reminder, task execution time and the average communication time are all considered as the priority metrics. A priority based task dispatching list is set up by comprehensive analysis and calculating the priority for each task. Then interval insertion and task duplication strategies are employed to map tasks to processors, which can decrease the communication cost, improve the processor utilization rate and shorten the schedule length. Our experiments show that the proposed algorithm has better performance and lower complexity than the existing scheduling algorithms.","PeriodicalId":187974,"journal":{"name":"2013 International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Task Scheduling Algorithm for Multi-core Processors\",\"authors\":\"Xuanxia Yao, P. Geng, Xiaojiang Du\",\"doi\":\"10.1109/PDCAT.2013.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the widespread use of multi-core processors, task scheduling for multi-core processors has become a hot issue. Many researches have been done on task scheduling from various perspectives. However, the existing task scheduling algorithms still have some drawbacks, such as low processor utilization rate, high complexity, and so on. This paper presents a task scheduling algorithm for multi-core processors, which is based on priority queue and task duplication. In the proposed algorithm, the Directed A cyclic Graph (DAG) is used to build a task model. Based on the model, task critical degree, task reminder, task execution time and the average communication time are all considered as the priority metrics. A priority based task dispatching list is set up by comprehensive analysis and calculating the priority for each task. Then interval insertion and task duplication strategies are employed to map tasks to processors, which can decrease the communication cost, improve the processor utilization rate and shorten the schedule length. Our experiments show that the proposed algorithm has better performance and lower complexity than the existing scheduling algorithms.\",\"PeriodicalId\":187974,\"journal\":{\"name\":\"2013 International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2013.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2013.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

随着多核处理器的广泛应用,多核处理器的任务调度已成为一个热点问题。关于任务调度的研究从不同的角度展开。然而,现有的任务调度算法仍然存在处理器利用率低、复杂度高等缺点。提出了一种基于优先级队列和任务复制的多核处理器任务调度算法。在该算法中,使用有向循环图(DAG)来构建任务模型。在该模型的基础上,将任务关键度、任务提醒、任务执行时间和平均通信时间作为优先级指标。通过综合分析和计算各任务的优先级,建立了基于优先级的任务调度列表。然后采用区间插入和任务复制策略将任务映射到处理器,从而降低了通信成本,提高了处理器利用率,缩短了调度长度。实验表明,该算法比现有调度算法具有更好的性能和更低的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Task Scheduling Algorithm for Multi-core Processors
With the widespread use of multi-core processors, task scheduling for multi-core processors has become a hot issue. Many researches have been done on task scheduling from various perspectives. However, the existing task scheduling algorithms still have some drawbacks, such as low processor utilization rate, high complexity, and so on. This paper presents a task scheduling algorithm for multi-core processors, which is based on priority queue and task duplication. In the proposed algorithm, the Directed A cyclic Graph (DAG) is used to build a task model. Based on the model, task critical degree, task reminder, task execution time and the average communication time are all considered as the priority metrics. A priority based task dispatching list is set up by comprehensive analysis and calculating the priority for each task. Then interval insertion and task duplication strategies are employed to map tasks to processors, which can decrease the communication cost, improve the processor utilization rate and shorten the schedule length. Our experiments show that the proposed algorithm has better performance and lower complexity than the existing scheduling algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulated-Annealing Load Balancing for Resource Allocation in Cloud Environments A Parallel Algorithm for 2D Square Packing Ten Years of Research on Fault Management in Grid Computing: A Systematic Mapping Study cHPP controller: A High Performance Hyper-node Hardware Accelerator Service Availability for Various Forwarded Descriptions with Dynamic Buffering on Peer-to-Peer Streaming Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1