电动及混合动力汽车锂离子电池热性能实验研究

Z. H. Che Daud, D. Chrenko, E. Aglzim, A. Kéromnès, L. Le Moyne
{"title":"电动及混合动力汽车锂离子电池热性能实验研究","authors":"Z. H. Che Daud, D. Chrenko, E. Aglzim, A. Kéromnès, L. Le Moyne","doi":"10.1109/VPPC.2014.7007069","DOIUrl":null,"url":null,"abstract":"An experimental study of lithium-ion battery thermal behaviour for automotive applications is presented. Experiments are conducted for a pack of three battery cells which encounter a series of different discharge and cooling conditions. Results show the different temperature distribution on different locations of the battery cell surface with the highest temperature increase near the positive and negative electrode. The temperature increases sharply if the state of charge (SOC) is too small (less then 20%). Higher discharge rate contributes to higher temperature increase and bigger maximum and minimum temperature difference. Higher cooling air velocity helps to decrease the overall temperature and create better cell surface temperature distribution. Battery utilisation under real vehicle driving conditions is simulated using NEDC and Artemis rural driving cycle with different cooling strategies. Various information collected throughout this project are important in understanding the battery thermal behaviour and help in the design of better cooling systems and strategies for a better used of lithium-ion batteries in automotive applications.","PeriodicalId":133160,"journal":{"name":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Experimental Study of Lithium-Ion Battery Thermal Behaviour for Electric and Hybrid Electric Vehicles\",\"authors\":\"Z. H. Che Daud, D. Chrenko, E. Aglzim, A. Kéromnès, L. Le Moyne\",\"doi\":\"10.1109/VPPC.2014.7007069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental study of lithium-ion battery thermal behaviour for automotive applications is presented. Experiments are conducted for a pack of three battery cells which encounter a series of different discharge and cooling conditions. Results show the different temperature distribution on different locations of the battery cell surface with the highest temperature increase near the positive and negative electrode. The temperature increases sharply if the state of charge (SOC) is too small (less then 20%). Higher discharge rate contributes to higher temperature increase and bigger maximum and minimum temperature difference. Higher cooling air velocity helps to decrease the overall temperature and create better cell surface temperature distribution. Battery utilisation under real vehicle driving conditions is simulated using NEDC and Artemis rural driving cycle with different cooling strategies. Various information collected throughout this project are important in understanding the battery thermal behaviour and help in the design of better cooling systems and strategies for a better used of lithium-ion batteries in automotive applications.\",\"PeriodicalId\":133160,\"journal\":{\"name\":\"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC.2014.7007069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2014.7007069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了汽车用锂离子电池热性能的实验研究。在不同的放电和冷却条件下,对三组电池进行了实验。结果表明,电池表面不同位置的温度分布不同,在正负极附近温度升高最高。如果荷电状态(SOC)过小(小于20%),温度会急剧升高。放电速率越高,温升越高,最大最小温差越大。较高的冷却风速有助于降低整体温度,并创造更好的电池表面温度分布。采用NEDC和Artemis两种不同冷却策略的乡村行驶工况,模拟了真实车辆行驶条件下的电池利用率。在整个项目中收集的各种信息对于理解电池的热行为非常重要,有助于设计更好的冷却系统和策略,以便更好地在汽车应用中使用锂离子电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Study of Lithium-Ion Battery Thermal Behaviour for Electric and Hybrid Electric Vehicles
An experimental study of lithium-ion battery thermal behaviour for automotive applications is presented. Experiments are conducted for a pack of three battery cells which encounter a series of different discharge and cooling conditions. Results show the different temperature distribution on different locations of the battery cell surface with the highest temperature increase near the positive and negative electrode. The temperature increases sharply if the state of charge (SOC) is too small (less then 20%). Higher discharge rate contributes to higher temperature increase and bigger maximum and minimum temperature difference. Higher cooling air velocity helps to decrease the overall temperature and create better cell surface temperature distribution. Battery utilisation under real vehicle driving conditions is simulated using NEDC and Artemis rural driving cycle with different cooling strategies. Various information collected throughout this project are important in understanding the battery thermal behaviour and help in the design of better cooling systems and strategies for a better used of lithium-ion batteries in automotive applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Different Control Schemes of a Battery/Supercapacitor System in Electric Vehicle Hybrid Systems Energy Management Using Optimization Method Based on Dynamic Sources Models Magnetic Circuit Model: A Quick and Accurate Sizing Model for Electrical Machine Optimization in Hybrid Vehicles Game-Theoretic Approach for Complete Vehicle Energy Management A Modified Space Vector Modulation for Three-Phase Z-Source Integrated Charger
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1