{"title":"基于BM25加权和不常用特征集的DSL任务特征图模型改进","authors":"Yves Bestgen","doi":"10.18653/v1/W17-1214","DOIUrl":null,"url":null,"abstract":"This paper describes the system developed by the Centre for English Corpus Linguistics (CECL) to discriminating similar languages, language varieties and dialects. Based on a SVM with character and POStag n-grams as features and the BM25 weighting scheme, it achieved 92.7% accuracy in the Discriminating between Similar Languages (DSL) task, ranking first among eleven systems but with a lead over the next three teams of only 0.2%. A simpler version of the system ranked second in the German Dialect Identification (GDI) task thanks to several ad hoc postprocessing steps. Complementary analyses carried out by a cross-validation procedure suggest that the BM25 weighting scheme could be competitive in this type of tasks, at least in comparison with the sublinear TF-IDF. POStag n-grams also improved the system performance.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Improving the Character Ngram Model for the DSL Task with BM25 Weighting and Less Frequently Used Feature Sets\",\"authors\":\"Yves Bestgen\",\"doi\":\"10.18653/v1/W17-1214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the system developed by the Centre for English Corpus Linguistics (CECL) to discriminating similar languages, language varieties and dialects. Based on a SVM with character and POStag n-grams as features and the BM25 weighting scheme, it achieved 92.7% accuracy in the Discriminating between Similar Languages (DSL) task, ranking first among eleven systems but with a lead over the next three teams of only 0.2%. A simpler version of the system ranked second in the German Dialect Identification (GDI) task thanks to several ad hoc postprocessing steps. Complementary analyses carried out by a cross-validation procedure suggest that the BM25 weighting scheme could be competitive in this type of tasks, at least in comparison with the sublinear TF-IDF. POStag n-grams also improved the system performance.\",\"PeriodicalId\":167439,\"journal\":{\"name\":\"Workshop on NLP for Similar Languages, Varieties and Dialects\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on NLP for Similar Languages, Varieties and Dialects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-1214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on NLP for Similar Languages, Varieties and Dialects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-1214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the Character Ngram Model for the DSL Task with BM25 Weighting and Less Frequently Used Feature Sets
This paper describes the system developed by the Centre for English Corpus Linguistics (CECL) to discriminating similar languages, language varieties and dialects. Based on a SVM with character and POStag n-grams as features and the BM25 weighting scheme, it achieved 92.7% accuracy in the Discriminating between Similar Languages (DSL) task, ranking first among eleven systems but with a lead over the next three teams of only 0.2%. A simpler version of the system ranked second in the German Dialect Identification (GDI) task thanks to several ad hoc postprocessing steps. Complementary analyses carried out by a cross-validation procedure suggest that the BM25 weighting scheme could be competitive in this type of tasks, at least in comparison with the sublinear TF-IDF. POStag n-grams also improved the system performance.