复杂工程系统设计初期的模型验证

E. Keshavarzi, K. Goebel, I. Tumer, C. Hoyle
{"title":"复杂工程系统设计初期的模型验证","authors":"E. Keshavarzi, K. Goebel, I. Tumer, C. Hoyle","doi":"10.1115/detc2018-85137","DOIUrl":null,"url":null,"abstract":"In design process of a complex engineered system, studying the behavior of the system prior to manufacturing plays a key role to reduce cost of design and enhance the efficiency of the system during its lifecycle. To study the behavior of the system in the early design phase, it is required to model the characterization of the system and simulate the system’s behavior. The challenge is the fact that in early design stage, there is no or little information from the real system’s behavior, therefore there is not enough data to use to validate the model simulation and make sure that the model is representing the real system’s behavior appropriately. In this paper, we address this issue and propose methods to validate the model developed in the early design stage. First we propose a method based on FMEA and show how to quantify expert’s knowledge and validate the model simulation in the early design stage. Then, we propose a non-parametric technique to test if the observed behavior of one or more subsystems which currently exist, and the model simulation are the same. In addition, a local sensitivity analysis search tool is developed that helps the designers to focus on sensitive parts of the system in further design stages, particularly when mapping the conceptual model to a component model. We apply the proposed methods to validate the output of failure simulation developed in the early stage of designing a monopropellant propulsion system design.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model Validation in Early Phase of Designing Complex Engineered Systems\",\"authors\":\"E. Keshavarzi, K. Goebel, I. Tumer, C. Hoyle\",\"doi\":\"10.1115/detc2018-85137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In design process of a complex engineered system, studying the behavior of the system prior to manufacturing plays a key role to reduce cost of design and enhance the efficiency of the system during its lifecycle. To study the behavior of the system in the early design phase, it is required to model the characterization of the system and simulate the system’s behavior. The challenge is the fact that in early design stage, there is no or little information from the real system’s behavior, therefore there is not enough data to use to validate the model simulation and make sure that the model is representing the real system’s behavior appropriately. In this paper, we address this issue and propose methods to validate the model developed in the early design stage. First we propose a method based on FMEA and show how to quantify expert’s knowledge and validate the model simulation in the early design stage. Then, we propose a non-parametric technique to test if the observed behavior of one or more subsystems which currently exist, and the model simulation are the same. In addition, a local sensitivity analysis search tool is developed that helps the designers to focus on sensitive parts of the system in further design stages, particularly when mapping the conceptual model to a component model. We apply the proposed methods to validate the output of failure simulation developed in the early stage of designing a monopropellant propulsion system design.\",\"PeriodicalId\":138856,\"journal\":{\"name\":\"Volume 2A: 44th Design Automation Conference\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 44th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2018-85137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2018-85137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在复杂工程系统的设计过程中,在制造前研究系统的行为对降低设计成本和提高系统生命周期的效率具有关键作用。为了在早期设计阶段研究系统的行为,需要对系统的特征进行建模并模拟系统的行为。挑战在于,在早期设计阶段,没有或很少有来自真实系统行为的信息,因此没有足够的数据来验证模型仿真,并确保模型适当地表示真实系统的行为。在本文中,我们解决了这个问题,并提出了在早期设计阶段验证模型的方法。首先,我们提出了一种基于FMEA的方法,并展示了如何在设计早期量化专家知识并验证模型仿真。然后,我们提出了一种非参数技术来测试当前存在的一个或多个子系统的观测行为,以及模型仿真是否相同。此外,还开发了一个局部敏感性分析搜索工具,帮助设计师在进一步的设计阶段关注系统的敏感部分,特别是在将概念模型映射到组件模型时。我们应用所提出的方法来验证在设计单推进剂推进系统设计的早期阶段所开发的失效模拟的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Validation in Early Phase of Designing Complex Engineered Systems
In design process of a complex engineered system, studying the behavior of the system prior to manufacturing plays a key role to reduce cost of design and enhance the efficiency of the system during its lifecycle. To study the behavior of the system in the early design phase, it is required to model the characterization of the system and simulate the system’s behavior. The challenge is the fact that in early design stage, there is no or little information from the real system’s behavior, therefore there is not enough data to use to validate the model simulation and make sure that the model is representing the real system’s behavior appropriately. In this paper, we address this issue and propose methods to validate the model developed in the early design stage. First we propose a method based on FMEA and show how to quantify expert’s knowledge and validate the model simulation in the early design stage. Then, we propose a non-parametric technique to test if the observed behavior of one or more subsystems which currently exist, and the model simulation are the same. In addition, a local sensitivity analysis search tool is developed that helps the designers to focus on sensitive parts of the system in further design stages, particularly when mapping the conceptual model to a component model. We apply the proposed methods to validate the output of failure simulation developed in the early stage of designing a monopropellant propulsion system design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Electricity Grid As an Agent-Based Market System: Exploring the Effects of Policy on Sustainability Ontology-Based Unified Representation of Dynamic Simulation Models in Engineering Design Reducing Evaluation Cost for Circuit Synthesis Using Active Learning Computational Design of a Personalized Artificial Spinal Disc for Additive Manufacturing With Physiological Rotational Motions Short-Term Load Forecasting With Different Aggregation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1